Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Rep ; 37(9): 1257-1268, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29947954

ABSTRACT

KEY MESSAGE: A seed maturation protein gene (CaSMP) from Coffea arabica is expressed in the endosperm of yellow/green fruits. The CaSMP promoter drives reporter expression in the seeds of immature tomato fruits. In this report, an expressed sequence tag-based approach was used to identify a seed-specific candidate gene for promoter isolation in Coffea arabica. The tissue-specific expression of the cognate gene (CaSMP), which encodes a yet uncharacterized coffee seed maturation protein, was validated by RT-qPCR. Additional expression analysis during coffee fruit development revealed higher levels of CaSMP transcript accumulation in the yellow/green phenological stage. Moreover, CaSMP was preferentially expressed in the endosperm and was down-regulated during water imbibition of the seeds. The presence of regulatory cis-elements known to be involved in seed- and endosperm-specific expression was observed in the CaSMP 5'-upstream region amplified by genome walking (GW). Additional histochemical analysis of transgenic tomato (cv. Micro-Tom) lines harboring the GW-amplified fragment (~ 1.4 kb) fused to uidA reporter gene confirmed promoter activity in the ovule of immature tomato fruits, while no activity was observed in the seeds of ripening fruits and in the other organs/tissues examined. These results indicate that the CaSMP promoter can be used to drive transgene expression in coffee beans and tomato seeds, thus representing a promising biotechnological tool.


Subject(s)
Coffea/metabolism , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Seeds/metabolism , Solanum lycopersicum/metabolism , Coffea/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Seeds/genetics
2.
BMC Mol Biol ; 10: 1, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19126214

ABSTRACT

BACKGROUND: Quantitative data from gene expression experiments are often normalized by transcription levels of reference or housekeeping genes. An inherent assumption for their use is that the expression of these genes is highly uniform in living organisms during various phases of development, in different cell types and under diverse environmental conditions. To date, the validation of reference genes in plants has received very little attention and suitable reference genes have not been defined for a great number of crop species including Coffea arabica. The aim of the research reported herein was to compare the relative expression of a set of potential reference genes across different types of tissue/organ samples of coffee. We also validated the expression profiles of the selected reference genes at various stages of development and under a specific biotic stress. RESULTS: The expression levels of five frequently used housekeeping genes (reference genes), namely alcohol dehydrogenase (adh), 14-3-3, polyubiquitin (poly), beta-actin (actin) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) was assessed by quantitative real-time RT-PCR over a set of five tissue/organ samples (root, stem, leaf, flower, and fruits) of Coffea arabica plants. In addition to these commonly used internal controls, three other genes encoding a cysteine proteinase (cys), a caffeine synthase (ccs) and the 60S ribosomal protein L7 (rpl7) were also tested. Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. The obtained results revealed significantly variable expression levels of all reference genes analyzed, with the exception of gapdh, which showed no significant changes in expression among the investigated experimental conditions. CONCLUSION: Our data suggests that the expression of housekeeping genes is not completely stable in coffee. Based on our results, gapdh, followed by 14-3-3 and rpl7 were found to be homogeneously expressed and are therefore adequate for normalization purposes, showing equivalent transcript levels in different tissue/organ samples. Gapdh is therefore the recommended reference gene for measuring gene expression in Coffea arabica. Its use will enable more accurate and reliable normalization of tissue/organ-specific gene expression studies in this important cherry crop plant.


Subject(s)
Coffea/genetics , Gene Expression Profiling/standards , Gene Expression Regulation, Plant , Reverse Transcriptase Polymerase Chain Reaction/standards , Coffea/physiology , Gene Expression Profiling/methods , Plant Proteins/genetics , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...