Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Med Inform Decis Mak ; 24(1): 119, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711099

ABSTRACT

The goal is to enhance an automated sleep staging system's performance by leveraging the diverse signals captured through multi-modal polysomnography recordings. Three modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), were considered to obtain the optimal fusions of the PSG signals, where 63 features were extracted. These include frequency-based, time-based, statistical-based, entropy-based, and non-linear-based features. We adopted the ReliefF (ReF) feature selection algorithms to find the suitable parts for each signal and superposition of PSG signals. Twelve top features were selected while correlated with the extracted feature sets' sleep stages. The selected features were fed into the AdaBoost with Random Forest (ADB + RF) classifier to validate the chosen segments and classify the sleep stages. This study's experiments were investigated by obtaining two testing schemes: epoch-wise testing and subject-wise testing. The suggested research was conducted using three publicly available datasets: ISRUC-Sleep subgroup1 (ISRUC-SG1), sleep-EDF(S-EDF), Physio bank CAP sleep database (PB-CAPSDB), and S-EDF-78 respectively. This work demonstrated that the proposed fusion strategy overestimates the common individual usage of PSG signals.


Subject(s)
Electroencephalography , Electromyography , Electrooculography , Machine Learning , Polysomnography , Sleep Stages , Humans , Sleep Stages/physiology , Adult , Male , Female , Signal Processing, Computer-Assisted
2.
Data Brief ; 53: 110215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419772

ABSTRACT

This paper describes a data collection experiment and the resulting dataset based on Bluetooth beacon messages collected in an indoor museum. The goal of this dataset is to study algorithms and techniques for proximity detection between people and points of interest (POI). To this purpose, we release the data we collected during 32 museum's visits, in which we vary the adopted smartphones and the visiting paths. The smartphone is used to collect Bluetooth beacons emitted by Bluetooth tags positioned nearby each POI. The visiting layout defines the order of visit of 10 artworks. The combination of different smartphones, the visiting paths and features of the indoor museum allow experiencing with realistic environmental conditions. The dataset comprises RSS (Received Signal Strength) values, timestamp and artwork identifiers, as long as a detailed ground truth, reporting the starting and ending time of each artwork's visit. The dataset is addressed to researchers and industrial players interested in further investigating how to automatically detect the location or the proximity between people and specific points of interest, by exploiting commercial technologies available with smartphone. The dataset is designed to speed up the prototyping process, by releasing an accurate ground truth annotation and details concerning the adopted hardware.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571713

ABSTRACT

Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.


Subject(s)
Brain Neoplasms , Deep Learning , Humans , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Benchmarking , Intelligence
4.
Sensors (Basel) ; 22(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36433430

ABSTRACT

Recently, laryngeal cancer cases have increased drastically across the globe. Accurate treatment for laryngeal cancer is intricate, especially in the later stages. This type of cancer is an intricate malignancy inside the head and neck area of patients. In recent years, diverse diagnosis approaches and tools have been developed by researchers for helping clinical experts to identify laryngeal cancer effectively. However, these existing tools and approaches have diverse issues related to performance constraints such as lower accuracy in the identification of laryngeal cancer in the initial stage, more computational complexity, and large time consumption in patient screening. In this paper, the authors present a novel and enhanced deep-learning-based Mask R-CNN model for the identification of laryngeal cancer and its related symptoms by utilizing diverse image datasets and CT images in real time. Furthermore, our suggested model is capable of capturing and detecting minor malignancies of the larynx portion in a significant and faster manner in the real-time screening of patients, and it saves time for the clinicians, allowing for more patient screening every day. The outcome of the suggested model is enhanced and pragmatic and obtained an accuracy of 98.99%, precision of 98.99%, F1 score of 97.99%, and recall of 96.79% on the ImageNet dataset. Several studies have been performed in recent years on laryngeal cancer detection by using diverse approaches from researchers. For the future, there are vigorous opportunities for further research to investigate new approaches for laryngeal cancer detection by utilizing diverse and large dataset images.


Subject(s)
Deep Learning , Laryngeal Neoplasms , Larynx , Humans , Laryngeal Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods
5.
Sensors (Basel) ; 22(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35161613

ABSTRACT

Dermoscopy images can be classified more accurately if skin lesions or nodules are segmented. Because of their fuzzy borders, irregular boundaries, inter- and intra-class variances, and so on, nodule segmentation is a difficult task. For the segmentation of skin lesions from dermoscopic pictures, several algorithms have been developed. However, their accuracy lags well behind the industry standard. In this paper, a modified U-Net architecture is proposed by modifying the feature map's dimension for an accurate and automatic segmentation of dermoscopic images. Apart from this, more kernels to the feature map allowed for a more precise extraction of the nodule. We evaluated the effectiveness of the proposed model by considering several hyper parameters such as epochs, batch size, and the types of optimizers, testing it with augmentation techniques implemented to enhance the amount of photos available in the PH2 dataset. The best performance achieved by the proposed model is with an Adam optimizer using a batch size of 8 and 75 epochs.


Subject(s)
Melanoma , Skin Diseases , Skin Neoplasms , Algorithms , Dermoscopy , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer
6.
Front Digit Health ; 4: 934609, 2022.
Article in English | MEDLINE | ID: mdl-36860207

ABSTRACT

Privacy by design within a system for assisted living, personalised care, and wellbeing is crucial to protect users from misuse of the data collected about their health. Especially if the information is collected through audio-video devices, the question is even more delicate due to the nature of these data. In addition to guaranteeing a high level of privacy, it is necessary to reassure end users about the correct use of these streams. The evolution of data analysis techniques began to take on an important role and increasingly defined characteristics in recent years. The purpose of this paper is twofold: on the one hand, it presents a state of the art about privacy in European Active Healthy Ageing/Active Healthy Ageing projects, with a focus on those related to audio and video processing. On the other hand, it proposes a methodology, developed in the context of the European project PlatfromUptake.eu, to identify clusters of stakeholders and application dimensions (technical, contextual, and business), define their characteristics, and show how privacy constraints affect them. From this study, we then generated a Strengths, Weaknesses, Opportunities, and Threats analysis in which we aim to identify the critical features connected to the selection and involvement of relevant stakeholders for the success of a project. Applying this type of methodology to the initial stages of a project allows understanding of which privacy issues could be related to the various stakeholder groups and which problems can then affect the correct development of the project. The idea is, therefore, to suggest a privacy-by-design approach according to the categories of stakeholders and project dimensions. The analysis will cover technical aspects, legislative and policies-related aspects also regarding the point of view of the municipalities, and aspects related to the acceptance and, therefore, to the perception of the safety of these technologies by the final end users.

7.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770396

ABSTRACT

The RE.S.I.STO project targets visitors of Pisa medieval city, with the goal of providing high-quality digital contents accessible with smart devices. We describe the design, implementation and the test phases of the RE.S.I.STO application, whose goal is to automatically detect the proximity between visitors and artworks. Proximity is detected with a set of algorithms based on the analysis of Bluetooth Low Energy beacons. We detail our experimental campaigns which reproduce several museum layouts of increasing complexity at two pilot sites, and we compute the performance of the implemented algorithms to detect the nearby artworks. In particular, we test our solution in a wide open space located in our research institute and by performing a real deployment at the Camposanto Monumentale located in Pisa (Italy). The obtained performance varies in the range of 40% to perfect accuracy, according to the complexity of the considered museum layouts. We also describe a set of stress and stability tests aimed at verifying the robustness of the application during the data collection process. Our results show that the mobile application is able to reduce the beacon loss rate, with an average value of 77% of collected beacons.

8.
Sensors (Basel) ; 20(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698547

ABSTRACT

Disease diagnosis is a critical task which needs to be done with extreme precision. In recent times, medical data mining is gaining popularity in complex healthcare problems based disease datasets. Unstructured healthcare data constitutes irrelevant information which can affect the prediction ability of classifiers. Therefore, an effective attribute optimization technique must be used to eliminate the less relevant data and optimize the dataset for enhanced accuracy. Type 2 Diabetes, also called Pima Indian Diabetes, affects millions of people around the world. Optimization techniques can be applied to generate a reliable dataset constituting of symptoms that can be useful for more accurate diagnosis of diabetes. This study presents the implementation of a new hybrid attribute optimization algorithm called Enhanced and Adaptive Genetic Algorithm (EAGA) to get an optimized symptoms dataset. Based on readings of symptoms in the optimized dataset obtained, a possible occurrence of diabetes is forecasted. EAGA model is further used with Multilayer Perceptron (MLP) to determine the presence or absence of type 2 diabetes in patients based on the symptoms detected. The proposed classification approach was named as Enhanced and Adaptive-Genetic Algorithm-Multilayer Perceptron (EAGA-MLP). It is also implemented on seven different disease datasets to assess its impact and effectiveness. Performance of the proposed model was validated against some vital performance metrics. The results show a maximum accuracy rate of 97.76% and 1.12 s of execution time. Furthermore, the proposed model presents an F-Score value of 86.8% and a precision of 80.2%. The method is compared with many existing studies and it was observed that the classification accuracy of the proposed Enhanced and Adaptive-Genetic Algorithm-Multilayer Perceptron (EAGA-MLP) model clearly outperformed all other previous classification models. Its performance was also tested with seven other disease datasets. The mean accuracy, precision, recall and f-score obtained was 94.7%, 91%, 89.8% and 90.4%, respectively. Thus, the proposed model can assist medical experts in accurately determining risk factors of type 2 diabetes and thereby help in accurately classifying the presence of type 2 diabetes in patients. Consequently, it can be used to support healthcare experts in the diagnosis of patients affected by diabetes.


Subject(s)
Algorithms , Diabetes Mellitus, Type 2 , Neural Networks, Computer , Data Mining , Diabetes Mellitus, Type 2/diagnosis , Humans
9.
Sensors (Basel) ; 19(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731669

ABSTRACT

A cruise ship is a concentrate of technologies aimed at providing passengers with the best leisure experience. As tourism in the cruise sector increases, ship owners turned their attention towards novel Internet of things solutions able, from one hand, to provide passengers with personalized and comfortable new services and, from the other hand, to enable energy saving behaviors and a smart management of the vessel equipment. This paper introduces the E-Cabin system, a software architecture that leverages sensor networks and reasoning techniques and allows a customized cabin indoor comfort. The E-Cabin architecture is scalable and easily extendible; sensor networks can be added or removed, rules can be added to/changed in the reasoner software, and new services can be supported based on the analysis of the collected data, without altering the system architecture. The system also allows the ship manager to monitor each cabin status though a simple and intuitive dashboard, thus providing useful insights enabling a smart scheduling of maintenance activities, energy saving, and security issues detection. This work delves into the E-Cabin's system architecture and provides some usability tests to measure the dashboard's efficacy.

10.
Sensors (Basel) ; 19(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340542

ABSTRACT

This paper introduces technical solutions devised to support the Deployment Site - Regione Emilia Romagna (DS-RER) of the ACTIVAGE project. The ACTIVAGE project aims at promoting IoT (Internet of Things)-based solutions for Active and Healthy ageing. DS-RER focuses on improving continuity of care for older adults (65+) suffering from aftereffects of a stroke event. A Wireless Sensor Kit based on Wi-Fi connectivity was suitably engineered and realized to monitor behavioral aspects, possibly relevant to health and wellbeing assessment. This includes bed/rests patterns, toilet usage, room presence and many others. Besides hardware design and validation, cloud-based analytics services are introduced, suitable for automatic extraction of relevant information (trends and anomalies) from raw sensor data streams. The approach is general and applicable to a wider range of use cases; however, for readability's sake, two simple cases are analyzed, related to bed and toilet usage patterns. In particular, a regression framework is introduced, suitable for detecting trends (long and short-term) and labeling anomalies. A methodology for assessing multi-modal daily behavioral profiles is introduced, based on unsupervised clustering techniques. The proposed framework has been successfully deployed at several real-users' homes, allowing for its functional validation. Clinical effectiveness will be assessed instead through a Randomized Control Trial study, currently being carried out.

11.
Sensors (Basel) ; 18(12)2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30562934

ABSTRACT

Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction.


Subject(s)
Databases as Topic , Interpersonal Relations , Wireless Technology , Humans , Signal Processing, Computer-Assisted , Smartphone
12.
Sensors (Basel) ; 18(6)2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29890695

ABSTRACT

Smart Home has gained widespread attention due to its flexible integration into everyday life. Pervasive sensing technologies are used to recognize and track the activities that people perform during the day, and to allow communication and cooperation of physical objects. Usually, the available infrastructures and applications leveraging these smart environments have a critical impact on the overall cost of the Smart Home construction, require to be preferably installed during the home construction and are still not user-centric. In this paper, we propose a low cost, easy to install, user-friendly, dynamic and flexible infrastructure able to perform runtime resources management by decoupling the different levels of control rules. The basic idea relies on the usage of off-the-shelf sensors and technologies to guarantee the regular exchange of critical information, without the necessity from the user to develop accurate models for managing resources or regulating their access/usage. This allows us to simplify the continuous updating and improvement, to reduce the maintenance effort and to improve residents’ living and security. A first validation of the proposed infrastructure on a case study is also presented.

13.
Sensors (Basel) ; 17(10)2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29027948

ABSTRACT

In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.

14.
IEEE Trans Inf Technol Biomed ; 15(3): 474-80, 2011 May.
Article in English | MEDLINE | ID: mdl-21349794

ABSTRACT

A feasibility study, where small wireless transceivers are used to classify some typical limb movements used in physical therapy processes is presented. Wearable wireless low-cost commercial transceivers operating at 2.4 GHz are supposed to be widely deployed in indoor settings and on people's bodies in tomorrow's pervasive computing environments. The key idea of this work is to exploit their presence by collecting the received signal strength measured between those worn by a person. The measurements are used to classify a set of kinesiotherapy activities. The collected data are classified by using both support vector machine and K-nearest neighbor methods, in order to recognise the different activities.


Subject(s)
Extremities/physiology , Monitoring, Ambulatory/instrumentation , Movement/physiology , Signal Processing, Computer-Assisted , Telemetry/instrumentation , Adult , Algorithms , Artificial Intelligence , Clothing , Female , Humans , Male , Monitoring, Ambulatory/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...