Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(9): e0006023, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37551990

ABSTRACT

Bacillus thuringiensis-based products are key in the biopesticides market. Bacillus thuringiensis kurstaki strains Lip and BLB1 were isolated from Lebanese and Tunisian soils, respectively. These strains are highly toxic against lepidopteran larvae, Ephestia kuehniella. Here, we report Lip and BLB1 complete genomes, including their plasmid and toxin contents.

2.
Res Microbiol ; 174(6): 104043, 2023.
Article in English | MEDLINE | ID: mdl-36764472

ABSTRACT

Bacillus thuringiensis, a gram-positive sporulating bacteria found in the environment, produces, during its sporulation phase, crystals responsible for its insecticidal activity, constituted of an assembly of pore-forming δ-endotoxins. This has led to its use as a biopesticide, an eco-friendly alternative to harmful chemical pesticides. To minimize production cost, one endemic Bacillus thuringiensis sv. kurstaki (Btk) strain Lip, isolated from Lebanese soil, was cultivated in a wheat bran (WB) based medium (IPM-4-Citrus project EC n° 734921). With the aim of studying the biochemical limitations of Btk biopesticide production in a wheat bran based medium, the WB was sieved into different granulometries, heat treated, inoculated with Btk Lip at flask scale, then filtered and separated into an insoluble and a permeate fractions. Several biochemical analyses, ie. bio performances, starch, elemental composition, total nitrogen and ashes, were then conducted on both fractions before and after culture. On a morphological level, two populations were distinguished, the fine starch granules and the coarse lignocellulosic particles. The biochemical analyses showed that both the raw and sieved WB have a similar proteins content (0.115 g/gdm WB), water content (0.116 g/gdm WB) and elemental composition (carbon: 45%, oxygen: 37%, nitrogen: 3%, hydrogen: 6%, ashes: 5%). The starch content was 17%, 14% and 34% and the fermentable fraction was estimated to 32.1%, 36.1% and 51.1% respectively for classes 2, 3 and 4. Both the elemental composition and Kjeldahl analyses showed that the nitrogen is the limiting nutrient of the culture.


Subject(s)
Bacillus thuringiensis , Biological Control Agents , Fermentation , Dietary Fiber/metabolism , Starch/chemistry , Starch/metabolism , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...