Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 54(4): 1194-6, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25611074

ABSTRACT

In the presence of "Ag2O" as a promoter, γ-MnO2 traps dihydrogen in its (2 × 1) and (1 × 1) tunnels. The course of this reaction was examined by analyzing the X-ray diffraction patterns of the HxMnO2/"Ag2O" system (0 ≤ x < 1) on the basis of pair distribution function and density functional theory (DFT) analyses. Hydrogen trapping occurs preferentially in the (2 × 1) tunnels of γ-MnO2, which is then followed by that in the (1 × 1) tunnels. Our DFT analysis shows that this process is thermodynamically favorable.

2.
Inorg Chem ; 48(15): 7141-50, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19572720

ABSTRACT

The synthesis of lanthanum phosphates in molten LiCl-KCL eutectic was chosen to address the preliminary treatment of chlorinated wastes containing fission products that are already present in a Li/Cl eutectic. The obtained monazite compound shows interesting properties to be considered as a good candidate to trap lanthanum for a long-time. The synthesis route based on LaCl(3) reaction with NH(4)H(2)PO(4) in a stoichiometric amount is a key point to obtain monazite as a pure phase. Hence, the salt composition is not modified during the synthesis reaction. The chemical reactivity of ammonium dihydrogenphosphate (NH(4)H(2)PO(4), hereafter abbreviated ADP) toward lanthanum chloride (LaCl(3)) in molten LiCl-KCl eutectic is probed by NMR spectroscopy to follow the formation of LaPO(4). Formally, a direct transformation of the two aforementioned precursors into LaPO(4), NH(4)Cl and HCl can be discarded on the basis of the low thermal stability of ADP. To shed some light on the formation of LaPO(4), in situ and ex situ NMR experiments were carried out on LiCl-KCl/LaCl(3)/ADP, as well as LiCl-KCl/ADP, KCl/ADP, and LiCl/ADP mixtures. First, the reactivity of the precursors in contact with the eutectic was studied from room temperature to 600 degrees C by means of (31)P, (35)Cl, and (139)La high temperature NMR. Second, ex situ room temperature magic angle spinning (MAS) and RadioFrequency driven recoupling (RFDR) (31)P solid-state NMR experiments were carried out on solid samples prepared in different conditions (i.e., temperature and atmosphere) and quenched at room temperature to identify frozen intermediate species in their metastable state. On the basis of this approach, we propose a model for the LaPO(4) formation based on a multistep mechanism which highlights the strong reactivity of ADP toward the alkaline salts but without final change in the composition of the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...