Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Meas ; 29(6): S213-25, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18544801

ABSTRACT

Nanoscale probes have been developed for the online characterization of the electrical properties of biological cells by dielectric spectroscopy. Two types of sensors have been designed and fabricated. The first one is devoted to low (<10 MHz) frequency range analysis and consists of gold nanoelectrodes. The second one works for high (>40 Hz) frequency range analysis and consists of a gold nanowire. The patterning of the sensors is performed by electron beam lithography. These devices are integrated in a microfluidic channel network for the manipulation of the cells and for the improvement of the performances of the sensors. These devices are used for the analysis of a well-characterized biological model in the area of the ligand-receptor interaction. The purpose is to monitor the interaction between the lactoferrin (the ligand) and the nucleolin and sulfated proteoglycans (the receptors) present or not on a set of mutant Chinese hamster ovary cell lines and their following internalization into the cytoplasm. Initial measurements have been performed with this microsystem and they demonstrate its capability for label-free, real-time, analysis of a dynamic mechanism involving biological cells.


Subject(s)
Nanostructures/chemistry , Nanotechnology/instrumentation , Online Systems , Spectrum Analysis/methods , Animals , CHO Cells , Computer Simulation , Cricetinae , Cricetulus , Electric Impedance , Gold/metabolism , Humans , Lactoferrin/metabolism , Microfluidics , Microscopy, Electron, Scanning , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...