Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Vaccine ; 41(39): 5730-5741, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37567799

ABSTRACT

There is a major unmet need for strategies to improve the immunogenicity of vaccines to protect against highly pathogenic avian influenza strains with pandemic potential. This study tested the ability of adjuvants based on delta inulin (Advax™) alone or combined with a TLR9 agonist (Advax-CpG™) to enhance the immunogenicity of recombinant H5 hemagglutinin antigen expressed in insect cells (rH5HA) to protect mice against lethal influenza infection. The Advax-adjuvanted rH5HA induced high serum hemagglutination inhibition activity, as well as Th1 and Th2 cytokine secreting CD4 and CD8 T cells. Immunization protected mice against a lethal heterosubtypic H5N1 virus challenge. Mice immunized with an Advax-adjuvanted rHA2 stem antigen prepared by enzymatic cleavage of rH5HA produced serum antibodies devoid of hemagglutination inhibition activity, but these anti-HA2 antibodies were nevertheless able to transfer protection against lethal H1N1 or H3N2 infections to naïve mice. We hypothesize that the enhanced protection afforded by Advax-adjuvanted rH5HA may be mediated by the combination of neutralizing antibodies directed at the HA head, anti-HA2 stem antibodies plus memory CD4 + and CD8 + T cells. This outcome supports further development of the Advax-adjuvanted rH5 pandemic influenza vaccine platform.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Antibodies, Viral , Influenza A Virus, H3N2 Subtype , Adjuvants, Immunologic , Vaccines, Synthetic , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control
2.
Int J Pharm ; 641: 123081, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37230371

ABSTRACT

Seasonal influenza virus infections cause a substantial number of deaths each year. While zanamivir (ZAN) is efficacious against oseltamivir-resistant influenza strains, the efficacy of the drug is limited by its route of administration, oral inhalation. Herein, we present the development of a hydrogel-forming microneedle array (MA) in combination with ZAN reservoirs for treating seasonal influenza. The MA was fabricated from Gantrez® S-97 crosslinked with PEG 10,000. Various reservoir formulations included ZAN hydrate, ZAN hydrochloric acid (HCl), CarraDres™, gelatin, trehalose, and/or alginate. In vitro permeation studies with a lyophilized reservoir consisting of ZAN HCl, gelatin, and trehalose resulted in rapid and high delivery of up to 33 mg of ZAN across the skin with delivery efficiency of up to ≈75% by 24 h. Pharmacokinetics studies in rats and pigs demonstrated that a single administration of a MA in combination with a CarraDres™ ZAN HCl reservoir offered a simple and minimally invasive delivery of ZAN into the systemic circulation. In pigs, efficacious plasma and lung steady-state levels of ∼120 ng/mL were reached within 2 h and sustained between 50 and 250 ng/mL over 5 days. MA-enabled delivery of ZAN could enable a larger number of patients to be reached during an influenza outbreak.


Subject(s)
Influenza, Human , Zanamivir , Rats , Animals , Swine , Humans , Zanamivir/therapeutic use , Antiviral Agents , Gelatin , Trehalose
3.
Preprint in English | bioRxiv | ID: ppbiorxiv-362335

ABSTRACT

As the COVID-19 pandemic continues to fold out, the morbidity and mortality are increasing daily. Effective treatment for SARS-CoV-2 is urgently needed. We recently discovered four SARS-CoV-2 main protease (Mpro) inhibitors including boceprevir, calpain inhibitors II and XII and GC-376 with potent antiviral activity against infectious SARS-CoV-2 in cell culture. Despite the weaker enzymatic inhibition of calpain inhibitors II and XII against Mpro compared to GC-376, calpain inhibitors II and XII had more potent cellular antiviral activity. This observation promoted us to hypothesize that the cellular antiviral activity of calpain inhibitors II and XII might also involve the inhibition of cathepsin L in addition to Mpro. To test this hypothesis, we tested calpain inhibitors II and XII in the SARS-CoV-2 pseudovirus neutralization assay in Vero E6 cells and found that both compounds significantly decreased pseudoviral particle entry into cells, indicating their role in inhibiting cathepsin L. The involvement of cathepsin L was further confirmed in the drug time-of-addition experiment. In addition, we found that these four compounds not only inhibit SARS-CoV-2, but also SARS-CoV, MERS-CoV, as well as human coronaviruses (CoVs) 229E, OC43, and NL63. The mechanism of action is through targeting the viral Mpro, which was supported by the thermal shift binding assay and enzymatic FRET assay. We further showed that these four compounds have additive antiviral effect when combined with remdesivir. Altogether, these results suggest that boceprevir, calpain inhibitors II and XII, and GC-376 are not only promising antiviral drug candidates against existing human coronaviruses, but also might work against future emerging CoVs.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-275891

ABSTRACT

The coronavirus main protease, Mpro, is a key protein in the virus life cycle and a major drug target. Based on crystal structures of SARSCoV2 Mpro complexed with peptidomimetic inhibitors, we recognized a binding characteristic shared with proline-containing inhibitors of hepatitis C virus protease. Initial tests showed that this subclass of HCV protease inhibitors indeed exhibited activity against Mpro. Postulating a benefit for a preorganized backbone conformation, we designed new ketoamide-based Mpro inhibitors based on central proline rings. One of the designed compounds, ML1000, inhibits Mpro with low-nanomolar affinity and suppresses SARSCoV2 viral replication in human cells at sub-micromolar concentrations. Our findings identify ML1000 as a promising new pre-organized scaffold for the development of anti-coronavirus drugs.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-223727

ABSTRACT

The main protease (Mpro) of SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic, is a key antiviral drug target. While most SARS-CoV-2 Mpro inhibitors have a {gamma}-lactam glutamine surrogate at the P1 position, we recently discovered several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II/XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. To determine the binding mode of these calpain inhibitors and establish a structure-activity relationship, we solved X-ray crystal structures of Mpro in complex with calpain inhibitors II and XII, and three analogues of GC-376, one of the most potent Mpro inhibitors in vitro. The structure of Mpro with calpain inhibitor II confirmed the S1 pocket of Mpro can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose where the P1 pyridine inserts in the S1 pocket and the P1 norvaline is positioned in the S1 pocket. The overall conformation is semi-helical, wrapping around the catalytic core, in contrast to the extended conformation of other peptidomimetic inhibitors. Additionally, the structures of three GC-376 analogues UAWJ246, UAWJ247, and UAWJ248 provide insight to the sidechain preference of the S1, S2, S3 and S4 pockets, and the superior cell-based activity of the aldehyde warhead compared with the -ketoamide. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of Mpro inhibitors as SARS-CoV-2 antivirals.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-051581

ABSTRACT

A novel coronavirus SARS-CoV-2, also called novel coronavirus 2019 (nCoV-19), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.96% as of May 4, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 M. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 [A] resolution with three monomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...