Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(28): e2122122119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867750

ABSTRACT

The precise and accurate determination of the radionuclide inventory in radioactive waste streams, including those generated during nuclear decommissioning, is a key aspect in establishing the best-suited nuclear waste management and disposal options. Radiocarbon ([Formula: see text]) is playing a crucial role in this scenario because it is one of the so-called difficult to measure isotopes; currently, [Formula: see text] analysis requires complex systems, such as accelerator mass spectrometry (AMS) or liquid scintillation counting (LSC). AMS has an outstanding limit of detection, but only a few facilities are available worldwide; LSC, which can have similar performance, is more widespread, but sample preparation can be nontrivial. In this paper, we demonstrate that the laser-based saturated-absorption cavity ring-down (SCAR) spectroscopic technique has several distinct advantages and represents a mature and accurate alternative for [Formula: see text] content determination in nuclear waste. As a proof-of-principle experiment, we show consistent results of AMS and SCAR for samples of concrete and graphite originating from nuclear installations. In particular, we determined mole fractions of 1.312(9) F[Formula: see text] and 30.951(7) F[Formula: see text] corresponding to ∼1.5 and 36.2 parts per trillion (ppt), respectively, for two different graphite samples originating from different regions of the Adiabatic Resonance Crossing activator prototype installed on one irradiation line of an MC40 Scanditronix cyclotron. Moreover, we measure a mole fraction of 0.593(8) F[Formula: see text] ([Formula: see text] ppt) from a concrete sample originating from an external wall of the Ispra-1 nuclear research reactor currently in the decommissioning phase.


Subject(s)
Carbon Radioisotopes , Graphite , Radioactive Waste , Waste Management , Carbon Radioisotopes/analysis , Graphite/chemistry , Mass Spectrometry , Radioactive Waste/analysis , Radiometric Dating , Waste Management/methods
2.
Nat Commun ; 10(1): 2938, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31270325

ABSTRACT

Miniaturized frequency comb sources across hard-to-access spectral regions, i.e. mid- and far-infrared, have long been sought. Four-wave-mixing based Quantum Cascade Laser combs (QCL-combs) are ideal candidates, in this respect, due to the unique possibility to tailor their spectral emission by proper nanoscale design of the quantum wells. We demonstrate full-phase-stabilization of a QCL-comb against the primary frequency standard, proving independent and simultaneous control of the two comb degrees of freedom (modes spacing and frequency offset) at a metrological level. Each emitted mode exhibits a sub-Hz relative frequency stability, while a correlation analysis on the modal phases confirms the high degree of coherence in the device emission, over different power-cycles and over different days. The achievement of fully controlled, phase-stabilized QCL-comb emitters proves that this technology is mature for metrological-grade uses, as well as for an increasing number of scientific and technological applications.

3.
Sci Adv ; 3(9): e1603317, 2017 09.
Article in English | MEDLINE | ID: mdl-28879235

ABSTRACT

Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 µW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10-10. The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

4.
Sensors (Basel) ; 16(2): 238, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26901199

ABSTRACT

The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

5.
Sci Rep ; 5: 13566, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315647

ABSTRACT

Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes.

6.
Sensors (Basel) ; 13(3): 3331-40, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23478601

ABSTRACT

We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.


Subject(s)
Gases/isolation & purification , Terahertz Spectroscopy , Equipment Design , Humans , Infrared Rays , Lasers, Semiconductor
SELECTION OF CITATIONS
SEARCH DETAIL
...