Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mol Ther Oncolytics ; 30: 316-319, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732297

ABSTRACT

Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the in vitro susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of in vivo efficacy, however, remains unclear. Here we demonstrate that a recombinant, oncolytic myxoma virus shows efficacy in two murine models of triple negative breast cancer despite extremely low permissivity of these models to viral infection. These data demonstrate that in vitro infectivity studies are not an accurate surrogate for therapeutic efficacy and suggest that other tests need to be developed.

2.
J Immunother Cancer ; 11(6)2023 06.
Article in English | MEDLINE | ID: mdl-37270180

ABSTRACT

BACKGROUND: Arginine (Arg) is a semiessential amino acid whose bioavailability is required for the in vitro replication of several oncolytic viruses. In vivo, Arg bioavailability is regulated by a combination of dietary intake, protein catabolism, and limited biosynthesis through portions of the urea cycle. Interestingly, despite the importance of bioavailable Arg to support cellular proliferation, many forms of cancer are functionally auxotrophic for this amino acid due to the epigenetic silencing of argininosuccinate synthetase 1 (ASS1), an enzyme responsible for the conversion of citrulline and aspartate into the Arg precursor argininosuccinate. The impact of this silencing on oncolytic virotherapy (OV), however, has never been examined. METHODS: To address this gap in knowledge, we generated tumor cells lacking ASS1 and examined how loss of this enzyme impacted the in vivo replication and therapeutic efficacy of oncolytic myxoma virus (MYXV). We also generated a series of recombinant MYXV constructs expressing exogenous ASS1 to evaluate the therapeutic benefit of virally reconstituting Arg biosynthesis in ASS1-/- tumors. RESULTS: Our results show that the in vitro replication of oncolytic MYXV is dependent on the presence of bioavailable Arg. This dependence can be overcome by the addition of the metabolic precursor citrulline, however, this rescue requires expression of ASS1. Because of this, tumors formed from functionally ASS1-/- cells display significantly reduced MYXV replication as well as poorer therapeutic responses. Critically, both defects could be partially rescued by expressing exogenous ASS1 from recombinant oncolytic MYXVs. CONCLUSIONS: These results demonstrate that intratumoral defects to Arg metabolism can serve as a novel barrier to virally induced immunotherapy and that the exogenous expression of ASS1 can improve the efficacy of OV in Arg-auxotrophic tumors.


Subject(s)
Myxoma virus , Neoplasms , Oncolytic Viruses , Humans , Oncolytic Viruses/metabolism , Myxoma virus/genetics , Citrulline , Neoplasms/pathology , Arginine/metabolism
3.
J Virol ; 97(1): e0129422, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602363

ABSTRACT

Potassium (K+) is one of the most abundant cations in the human body. Under normal conditions, the vast majority of K+ is found within cells, and the extracellular [K+] is tightly regulated to within 3.0 to 5.0 mM. However, it has recently been shown that high levels of localized necrosis can increase the extracellular concentration of K+ to above 50 mM. This raises the possibility that elevated extracellular K+ might influence a variety of biological processes that occur within regions of necrotic tissue. For example, K+ has been shown to play a central role in the replication cycles of numerous viral families, and in cases of lytic infection, localized regions containing large numbers of necrotic cells can be formed. Here, we show that the replication of the model poxvirus myxoma virus (MYXV) is delayed by elevated levels of extracellular K+. These increased K+ concentrations alter the cellular endocytic pathway, leading to increased phagocytosis but a loss of endosomal/lysosomal segregation. This slows the release of myxoma virus particles from the endosomes, resulting in delays in genome synthesis and infectious particle formation as well as reduced viral spread. Additionally, mathematical modeling predicts that the extracellular K+ concentrations required to impact myxoma virus replication can be reached in viral lesions under a variety of conditions. Taken together, these data suggest that the extracellular [K+] plays a role in determining the outcomes of myxoma infection and that this effect could be physiologically relevant during pathogenic infection. IMPORTANCE Intracellular K+ homeostasis has been shown to play a major role in the replication of numerous viral families. However, the potential impact of altered extracellular K+ concentrations is less well understood. Our work demonstrates that increased concentrations of extracellular K+ can delay the replication cycle of the model poxvirus MYXV by inhibiting virion release from the endosomes. Additionally, mathematical modeling predicts that the levels of extracellular K+ required to impact MYXV replication can likely be reached during pathogenic infection. These results suggest that localized viral infection can alter K+ homeostasis and that these alterations might directly affect viral pathogenesis.


Subject(s)
Myxoma virus , Humans , Myxoma virus/genetics , Potassium , Endosomes , Virus Replication , Virion
4.
J Immunother ; 46(1): 1-4, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36472581

ABSTRACT

T-cell immunoglobulin and mucin domain 3 (TIM3) is emerging as a potential target for antibody-based checkpoint blockade. However, the efficacy of TIM3 blockade in combination with other treatment modalities, has not been extensively studied. In the current work we combined TIM3 blockade with myxoma virus-based oncolytic virotherapy (OV). Our results demonstrate that myxoma virus's ability to initiate an immense antitumor immune response complements the ability of TIM3 blockade to shift the tumor microenvironment to a more proinflammatory state. As a result, the combination of TIM3 blockade and OV is able to completely eradicate established disease, while neither monotherapy is effective. These data represent the first demonstration that OV can enhance the efficacy of TIM3 blockade and suggest that this treatment may need to be incorporated into more aggressive, combinatorial regimens in order to fulfill its potential as an immunotherapeutic.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Tumor Microenvironment
5.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35577502

ABSTRACT

BACKGROUND: Oncolytic virotherapy (OV) represents a method to treat a variety of solid tumors by inducing antitumor immune responses. While this therapy has been extremely efficacious in preclinical models, translating these successes into human patients has proven challenging. One of the major reasons for these failures is the existence of immune-regulatory mechanisms, which dampen the efficacy of virally induced antitumor immunity. Unfortunately, the full extent of these immune-regulatory pathways remains unclear. METHODS: To address this issue, we generated a doubly recombinant, oncolytic myxoma virus which expresses both a soluble fragment of programmed cell death protein 1 (PD1) and an interleukin 12 (IL-12) fusion protein (vPD1/IL-12 (virus-expressing PD1 and IL-12)). We then tested the molecular impact and therapeutic efficacy of this construct in multiple models of disseminated disease to identify novel pathways, which are associated with poor therapeutic outcomes. RESULTS: Our results demonstrate that vPD1/IL-12 causes robust inflammation during therapy including inducing high levels of tumor necrosis factor (TNF). Surprisingly, although expression of TNF has generally been assumed to be beneficial to OV, the presence of this TNF appears to inhibit therapeutic efficacy by reducing intratumoral T-cell viability. Likely because of this, disruption of the TNF pathway, either through genetic knockout or antibody-based blockade, significantly enhances the overall outcomes of vPD1/IL-12-based therapy that allows for the generation of complete cures in normally non-responsive models. CONCLUSIONS: These data suggest that some aspects of OV-induced inflammation might represent a double-edged sword during therapy and that specific blockade of TNF might enhance the efficacy of these treatments.


Subject(s)
Myxoma virus , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Necrosis Factor-alpha , Humans , Inflammation , Interleukin-12/genetics , Interleukin-12/metabolism , Myxoma virus/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
6.
PLoS One ; 15(4): e0231977, 2020.
Article in English | MEDLINE | ID: mdl-32352982

ABSTRACT

Poxviruses are large enveloped viruses that replicate exclusively in the cytoplasm. Like all viruses, their replication cycle begins with virion adsorption to the cell surface. Unlike most other viral families, however, no unique poxviral receptor has ever been identified. In the absence of a unique receptor, poxviruses are instead thought to adhere to the cell surface primarily through electrostatic interactions between the positively charged viral envelope proteins and the negatively charged sulfate groups on cellular glycosaminoglycans (GAGs). While these negatively charged GAGs are an integral part of all eukaryotic membranes, their specific expression and sulfation patterns differ between cell types. Critically, while poxviral binding has been extensively studied using virally centered genetic strategies, the impact of cell-intrinsic changes to GAG charge has never been examined. Here we show that loss of heparin sulfation, accomplished by deleting the enzyme N-Deacetylase and N-Sulfotransferase-1 (NDST1) which is essential for GAG sulfation, significantly reduces the binding affinity of both vaccinia and myxoma viruses to the cell surface. Strikingly, however, while this lowered binding affinity inhibits the subsequent spread of myxoma virus, it actually enhances the overall spread of vaccinia by generating more diffuse regions of infection. These data indicate that cell-intrinsic GAG sulfation plays a major role in poxviral infection, however, this role varies significantly between different members of the poxviridae.


Subject(s)
Poxviridae/physiology , Virus Replication , Animals , Cell Line , Heparin/metabolism , Intracellular Space/metabolism , Mice , Poxviridae/metabolism , Sulfotransferases/deficiency
7.
Oncolytic Virother ; 8: 57-69, 2019.
Article in English | MEDLINE | ID: mdl-31850282

ABSTRACT

INTRODUCTION: Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells. While OV has shown significant promise in recent clinical trials, the therapeutic use of viruses poses a number of unique challenges. In particular, obtaining effective viral spread throughout the tumor microenvironment remains problematic. Previous work has suggested this can be overcome by forcing oncolytic viruses to induce syncytia formation. METHODS: In the current work, we generated a series of recombinant myxoma viruses expressing exogenous fusion proteins from other viral genomes and examined their therapeutic potential in vitro and in vivo. RESULTS: Similar to previous studies, we observed that the expression of these fusion proteins during myxoma infection induced the formation of multinucleated syncytia which increased viral spread and lytic potential compared to non-fusogenic controls. Contrary to expectations, however, the treatment of established tumors with these viruses resulted in decreased therapeutic efficacy which corresponded with reduced viral persistence. DISCUSSION: These findings indicate that enhanced viral spread caused by syncytia formation can actually reduce the efficacy of OV and supports a number of previous works suggesting that the in vitro properties of viruses frequently fail to predict their in vivo efficacy.

8.
J Inflamm (Lond) ; 16: 12, 2019.
Article in English | MEDLINE | ID: mdl-31160886

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) is an antigen-independent, innate immune response to arterial occlusion and ischemia with subsequent paradoxical exacerbation after reperfusion. IRI remains a critical problem after vessel occlusion and infarction or during harvest and surgery in transplants. After transplant, liver IRI (LIRI) contributes to increased acute and chronic rejection and graft loss. Tissue loss during LIRI has been attributed to local macrophage activation and invasion with excessive inflammation together with hepatocyte apoptosis and necrosis. Inflammatory and apoptotic signaling are key targets for reducing post-ischemic liver injury.Myxomavirus is a rabbit-specific leporipoxvirus that encodes a suite of immune suppressing proteins, often with extensive function in other mammalian species. Serp-2 is a cross-class serine protease inhibitor (serpin) which inhibits the inflammasome effector protease caspase-1 as well as the apoptotic proteases granzyme B and caspases 8 and 10. In prior work, Serp-2 reduced inflammatory cell invasion after angioplasty injury and after aortic transplantation in rodents. In this report, we explore the potential for therapeutic treatment with Serp-2 in a mouse model of LIRI. METHODS: Wildtype (C57BL/6 J) mice were subjected to warm, partial (70%) hepatic ischemia for 90 min followed by treatment with saline or Serp-2 or M-T7, 100 ng/g/day given by intraperitoneal injection on alternate days for 5 days. M-T7 is a Myxomavirus-derived inhibitor of chemokine-GAG interactions and was used in this study for comparative analysis of an unrelated viral protein with an alternative immunomodulating mechanism of action. Survival, serum ALT levels and histopathology were assessed 24 h and 10 days post-LIRI. RESULTS: Serp-2 treatment significantly improved survival to 85.7% percent versus saline-treated wildtype mice (p = 0.0135), while M-T7 treatment did not significantly improve survival (p = 0.2584). Liver viability was preserved by Serp-2 treatment with a significant reduction in serum ALT levels (p = 0.0343) and infarct scar thickness (p = 0.0016), but with no significant improvement with M-T7 treatment. Suzuki scoring by pathologists blinded with respect to treatment group indicated that Serp-2 significantly reduced hepatocyte necrosis (p = 0.0057) and improved overall pathology score (p = 0.0046) compared to saline. Immunohistochemistry revealed that Serp-2 treatment reduced macrophage infiltration into the infarcted liver tissue (p = 0.0197). CONCLUSIONS: Treatment with Serp-2, a virus-derived inflammasome and apoptotic pathway inhibitor, improves survival after liver ischemia-reperfusion injury in mouse models. Treatment with a cross-class immune modulator provides a promising new approach designed to reduce ischemia-reperfusion injury, improving survival and reducing chronic transplant damage.

9.
J Immunother Cancer ; 7(1): 11, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651147

ABSTRACT

Expression of PDL1 on the surface of tumor cells can blunt the efficacy of many cancer immunotherapies. For example, our lab has previously shown that tumors derived from malignant cells incapable of expressing PDL1 are highly susceptible to immunotherapy induced by oncolytic virus treatment while tumors derived from PDL1 capable cells are highly resistant. In patient biopsies, however, expression of PDL1 on malignant cells is often not uniform with some cells expressing PDL1 while others do not. Importantly, how this partial PDL1 positivity influences the outcomes of immunotherapy remains largely unknown. In the current work, we expand on our previous findings by generating partially PDL1 positive tumors in immune competent animals and asking what percentage of tumor cells must express PDL1 for a tumor to become functionally resistant to oncolytic treatment. Our results indicate that the responsiveness of partially PDL1+ tumors correlates linearly with the percentage of PDL1 capable cells present at the initiation of treatment. Additionally, we observe that tumors which relapse after treatment display a significant increase in the numbers of PDL1 capable cells present suggesting that specific editing of mixed tumors might play a role in disease relapse. These data indicate that varying levels of PDL1 expression can play a significant role in the outcomes of oncolytic immunotherapy and challenges the concept that tumors should be viewed as simply PDL1+ or PDL1-.


Subject(s)
B7-H1 Antigen/genetics , Biomarkers, Tumor , Gene Expression , Immunomodulation , Immunotherapy , Oncolytic Virotherapy , Oncolytic Viruses , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Knockdown Techniques , Immunomodulation/genetics , Immunophenotyping , Melanoma, Experimental , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Viruses ; 10(10)2018 09 23.
Article in English | MEDLINE | ID: mdl-30249047

ABSTRACT

Inflammatory bowel disease (IBD) and Clostridium difficile infection cause gastrointestinal (GI) distension and, in severe cases, toxic megacolon with risk of perforation and death. Herpesviruses have been linked to severe GI dilatation. MHV-68 is a model for human gamma herpesvirus infection inducing GI dilatation in interleukin-10 (IL-10)-deficient mice but is benign in wildtype mice. MHV-68 also causes lethal vasculitis and pulmonary hemorrhage in interferon gamma receptor-deficient (IFNγR-/-) mice, but GI dilatation has not been reported. In prior work the Myxomavirus-derived anti-inflammatory serpin, Serp-1, improved survival, reducing vasculitis and pulmonary hemorrhage in MHV-68-infected IFNγR-/- mice with significantly increased IL-10. IL-10 has been investigated as treatment for GI dilatation with variable efficacy. We report here that MHV-68 infection produces severe GI dilatation with inflammation and gut wall degradation in 28% of INFγR-/- mice. Macrophage invasion and smooth muscle degradation were accompanied by decreased concentrations of T helper (Th2), B, monocyte, and dendritic cells. Plasma and spleen IL-10 were significantly reduced in mice with GI dilatation, while interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNFα) and INFγ increased. Treatment of gamma herpesvirus-infected mice with exogenous IL-10 prevents severe GI inflammation and dilatation, suggesting benefit for herpesvirus-induced dilatation.


Subject(s)
Gastric Dilatation/therapy , Gastric Dilatation/virology , Herpesviridae Infections/complications , Interleukin-10/therapeutic use , Receptors, Interferon/genetics , Rhadinovirus , Animals , Cytokines/blood , Cytokines/immunology , Disease Models, Animal , Gastric Dilatation/genetics , Gastric Dilatation/pathology , Interleukin-10/genetics , Mice , Mice, Knockout , Receptors, Interferon/metabolism , Statistics, Nonparametric , Interferon gamma Receptor
11.
Cancer Res ; 77(11): 2952-2963, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28314785

ABSTRACT

Oncolytic virotherapy represents an attractive option for the treatment of a variety of aggressive or refractory tumors. While this therapy is effective at rapidly debulking directly injected tumor masses, achieving complete eradication of established disease has proven difficult. One method to overcome this challenge is to use oncolytic viruses to induce secondary antitumor immune responses. Unfortunately, while the initial induction of these immune responses is typically robust, their subsequent efficacy is often inhibited through a variety of immunoregulatory mechanisms, including the PD1/PDL1 T-cell checkpoint pathway. To overcome this inhibition, we generated a novel recombinant myxoma virus (vPD1), which inhibits the PD1/PDL1 pathway specifically within the tumor microenvironment by secreting a soluble form of PD1 from infected cells. This virus both induced and maintained antitumor CD8+ T-cell responses within directly treated tumors and proved safer and more effective than combination therapy using unmodified myxoma and systemic αPD1 antibodies. Localized vPD1 treatment combined with systemic elimination of regulatory T cells had potent synergistic effects against metastatic disease that was already established in secondary solid organs. These results demonstrate that tumor-localized inhibition of the PD1/PDL1 pathway can significantly improve outcomes during oncolytic virotherapy. Furthermore, they establish a feasible path to translate these findings against clinically relevant disease. Cancer Res; 77(11); 2952-63. ©2017 AACR.


Subject(s)
Melanoma, Experimental/immunology , Oncolytic Virotherapy/methods , Programmed Cell Death 1 Receptor/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Tumor Microenvironment
12.
Mol Ther Oncolytics ; 3: 16032, 2016.
Article in English | MEDLINE | ID: mdl-27933316

ABSTRACT

Multiple myeloma is an incurable malignancy of plasma B-cells. Traditional chemotherapeutic regimes often induce initial tumor regression; however, virtually all patients eventually succumb to relapse caused by either reintroduction of disease during autologous transplant or expansion of chemotherapy resistant minimal residual disease. It has been previously demonstrated that an oncolytic virus known as myxoma can completely prevent myeloma relapse caused by reintroduction of malignant cells during autologous transplant. The ability of this virus to treat established residual disease in vivo, however, remained unknown. Here we demonstrate that intravenous administration of myxoma virus into mice bearing disseminated myeloma results in the elimination of 70-90% of malignant cells within 24 hours. This rapid debulking was dependent on direct contact of myxoma virus with residual myeloma and did not occur through destruction of the hematopoietic bone marrow niche. Importantly, systemic myxoma therapy also induced potent antimyeloma CD8+ T cell responses which localized to the bone marrow and were capable of completely eradicating established myeloma in some animals. These results demonstrate that oncolytic myxoma virus is not only effective at preventing relapse caused by reinfusion of tumor cells during stem cell transplant, but is also potentially curative for patients bearing established minimal residual disease.

13.
Clin Lymphoma Myeloma Leuk ; 16(4): 203-12, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26803534

ABSTRACT

INTRODUCTION: Multiple myeloma is a clonal malignancy of plasma B cells. Although recent advances have improved overall prognosis, virtually all myeloma patients still succumb to relapsing disease. Therefore, novel therapies to treat this disease remain urgently needed. We have recently shown that treatment of human multiple myeloma cells with an oncolytic virus known as myxoma results in rapid cell death even in the absence of viral replication; however, the specific mechanisms and pathways involved remain unknown. MATERIALS AND METHODS: To determine how myxoma virus eliminates human multiple myeloma cells, we queried the apoptotic pathways that were activated after viral infection using immunoblot analysis and other cell biology approaches. RESULTS: Our results indicate that myxoma virus infection initiates apoptosis in multiple myeloma cells through activation of the extrinsic initiator caspase-8. Caspase-8 activation subsequently results in cleavage of BH3 interacting-domain death agonist and loss of mitochondrial membrane potential causing secondary activation of caspase-9. Activation of caspase-8 appears to be independent of extrinsic death ligands and instead correlates with depletion of cellular inhibitors of apoptosis. We hypothesize that this depletion results from virally mediated host-protein shutoff because a myxoma construct that overexpresses the viral decapping enzymes displays improved oncolytic potential. CONCLUSION: Taken together, these results suggest that myxoma virus eliminates human multiple myeloma cells through a pathway unique to oncolytic poxviruses, making it an excellent therapeutic option for the treatment of relapsed or refractory patients.


Subject(s)
Multiple Myeloma/genetics , Myxoma virus/genetics , Apoptosis , Cell Death , Humans , Multiple Myeloma/pathology , Signal Transduction
14.
PLoS One ; 10(2): e0115482, 2015.
Article in English | MEDLINE | ID: mdl-25658487

ABSTRACT

Giant cell arteritis (GCA) and Takayasu's disease are inflammatory vasculitic syndromes (IVS) causing sudden blindness and widespread arterial obstruction and aneurysm formation. Glucocorticoids and aspirin are mainstays of treatment, predominantly targeting T cells. Serp-1, a Myxomavirus-derived serpin, blocks macrophage and T cells in a wide range of animal models. Serp-1 also reduced markers of myocardial injury in a Phase IIa clinical trial for unstable coronary disease. In recent work, we detected improved survival and decreased arterial inflammation in a mouse Herpesvirus model of IVS. Here we examine Serp-1 treatment of human temporal artery (TA) biopsies from patients with suspected TA GCA arteritis after implant (TAI) into the aorta of immunodeficient SCID (severe combined immunodeficiency) mice. TAI positive for arteritis (GCApos) had significantly increased inflammation and plaque when compared to negative TAI (GCAneg). Serp-1 significantly reduced intimal inflammation and CD11b+ cell infiltrates in TAI, with reduced splenocyte Th1, Th17, and Treg. Splenocytes from mice with GCApos grafts had increased gene expression for interleukin-1 beta (IL-1ß), IL-17, and CD25 and decreased Factor II. Serp-1 decreased IL-1ß expression. In conclusion, GCApos TAI xenografts in mice provide a viable disease model and have increased intimal inflammation as expected and Serp-1 significantly reduces vascular inflammatory lesions with reduced IL-1ß.


Subject(s)
Giant Cell Arteritis , Serpins/pharmacology , Temporal Arteries , Viral Proteins/pharmacology , Animals , Disease Models, Animal , Female , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/metabolism , Giant Cell Arteritis/pathology , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Takayasu Arteritis/drug therapy , Takayasu Arteritis/metabolism , Takayasu Arteritis/pathology , Temporal Arteries/metabolism , Temporal Arteries/pathology , Temporal Arteries/transplantation
15.
Oncolytic Virother ; 4: 1-11, 2015.
Article in English | MEDLINE | ID: mdl-27512665

ABSTRACT

The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor-relapsed or -refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1.

16.
Antimicrob Agents Chemother ; 57(9): 4114-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23774438

ABSTRACT

Lethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normal serine protease inhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c(+) splenocytes (macrophage and dendritic cells) and reduced CD11b(+) tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.


Subject(s)
Hemorrhage/drug therapy , Hemorrhagic Fever, Ebola/drug therapy , Herpesviridae Infections/drug therapy , Herpesviridae Infections/mortality , Membrane Proteins/pharmacology , Myxoma virus/chemistry , Animals , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/pathology , Disease Models, Animal , Ebolavirus , Factor X/antagonists & inhibitors , Factor X/metabolism , Gammaherpesvirinae , Hemorrhage/mortality , Hemorrhage/pathology , Hemorrhage/virology , Hemorrhagic Fever, Ebola/mortality , Hemorrhagic Fever, Ebola/pathology , Hemorrhagic Fever, Ebola/virology , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Inflammation/drug therapy , Inflammation/mortality , Inflammation/pathology , Inflammation/virology , Interferon-gamma/deficiency , Interferon-gamma/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/isolation & purification , Mice , Mice, Inbred BALB C , Mice, Knockout , Myxoma virus/physiology , Neuropeptides/pharmacology , Serpins/pharmacology , Survival Analysis , Tissue Plasminogen Activator/antagonists & inhibitors , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/metabolism , Vasculitis/drug therapy , Vasculitis/mortality , Vasculitis/pathology , Vasculitis/virology , Neuroserpin
17.
J Cancer Sci Ther ; 5: 291-299, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-25798214

ABSTRACT

Modification of the tumor microenvironment by inflammatory cells represents a newly recognized driving force in cancer with critical roles in tumor invasion, growth, angiogenesis, and metastasis. Increased thrombolytic cascade serine proteases, specifically urokinase-type plasminogen activator and its receptor, correlate with inflammatory cell migration, pancreatic cancer growth, invasion and unfavorable outcomes. Inflammation in pancreatic cancer is linked with myeloid-derived suppressor cell (MDSC) activity and cancer progression. Myxomavirus is a complex DNA virus encoding highly potent immune modulators. Serp-1 and M-T7 are two such secreted anti-inflammatory myxomaviral proteins. Serp-1 inhibits uPA, plasmin and coagulation factor X while M-T7 inhibits C, CC, and CXC chemokines. We have explored the potential use of these viral proteins for treatment of a range of human cancer isolates engrafted in severe combined immunodeficient (SCID) mice. Engrafted tumors were treated with either Serp-1, neuroserpin, a related mammalian serpin that inhibits thrombolytic proteases, or M-T7. Serp-1 and neuroserpin inhibited growth of the pancreatic cancer cell line Hs766t (P=0.03 and P=0.01, respectively) at 4 weeks after implantation. Serp-1 also inhibited growth of a second pancreatic cancer cell line MIA PaCa-2 in mice (P=0.02). Growth of the human breast cancer line MDA231 was not inhibited by Serp-1. M-T7, in contrast, did not alter growth of any of the cancer cell lines tested after implant into SCID mice. Serpin inhibition of pancreatic tumor growth was associated with a significant decrease in splenocyte MDSC counts by flow cytometry (P=0.009), without detected change in other splenocyte subpopulations. Serp-1 and NSP treatment also significantly reduced macrophage infiltration in tumors (P=0.001). In summary two anti-inflammatory serpins reduced inflammatory macrophage invasion and pancreatic tumor cell growth, suggesting potential therapeutic efficacy.

18.
PLoS One ; 7(9): e44694, 2012.
Article in English | MEDLINE | ID: mdl-23049756

ABSTRACT

Poxviruses express highly active inhibitors, including serine proteinase inhibitors (serpins), designed to target host immune defense pathways. Recent work has demonstrated clinical efficacy for a secreted, myxomaviral serpin, Serp-1, which targets the thrombotic and thrombolytic proteases, suggesting that other viral serpins may have therapeutic application. Serp-2 and CrmA are intracellular cross-class poxviral serpins, with entirely distinct functions from the Serp-1 protein. Serp-2 and CrmA block the serine protease granzyme B (GzmB) and cysteine proteases, caspases 1 and 8, in apoptotic pathways, but have not been examined for extracellular anti-inflammatory activity. We examined the ability of these cross-class serpins to inhibit plaque growth after arterial damage or transplant and to reduce leukocyte apoptosis. We observed that purified Serp-2, but not CrmA, given as a systemic infusion after angioplasty, transplant, or cuff-compression injury markedly reduced plaque growth in mouse and rat models in vivo. Plaque growth was inhibited both locally at sites of surgical trauma, angioplasty or transplant, and systemically at non-injured sites in ApoE-deficient hyperlipidemic mice. With analysis in vitro of human cells in culture, Serp-2 selectively inhibited T cell caspase activity and blocked cytotoxic T cell (CTL) mediated killing of T lymphocytes (termed fratricide). Conversely, both Serp-2 and CrmA inhibited monocyte apoptosis. Serp-2 inhibitory activity was significantly compromised either in vitro with GzmB antibody or in vivo in ApoE/GzmB double knockout mice. Conclusions The viral cross-class serpin, Serp-2, that targets both apoptotic and inflammatory pathways, reduces vascular inflammation in a GzmB-dependent fashion in vivo, and inhibits human T cell apoptosis in vitro. These findings indicate that therapies targeting Granzyme B and/or T cell apoptosis may be used to inhibit T lymphocyte apoptosis and inflammation in response to arterial injury.


Subject(s)
Aorta/drug effects , Carotid Stenosis/drug therapy , Cytotoxicity, Immunologic/drug effects , Inflammation/drug therapy , Serpins/pharmacology , T-Lymphocytes/drug effects , Viral Proteins/pharmacology , Angioplasty/adverse effects , Animals , Aorta/immunology , Aorta/transplantation , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Carotid Stenosis/etiology , Carotid Stenosis/immunology , Carotid Stenosis/pathology , Caspase 1/metabolism , Caspase 8/metabolism , Cell Line , Gene Expression/drug effects , Granzymes/antagonists & inhibitors , Granzymes/metabolism , Humans , Inflammation/etiology , Inflammation/immunology , Inflammation/pathology , Male , Mice , Rats , Rats, Sprague-Dawley , Serpins/genetics , Serpins/isolation & purification , T-Lymphocytes/immunology , Viral Proteins/genetics , Viral Proteins/isolation & purification
19.
Trends Mol Med ; 18(6): 304-10, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22554906

ABSTRACT

Inflammatory responses now have a defined central role in cancer cell growth, invasion, and metastases. Anti-inflammatory proteins from viruses target key stages in immune response pathways and have potential as novel therapeutics for cancer, including highly potent virus-derived inhibitors of protease, chemokine, cytokine, and apoptotic cascades that have been identified. Serine proteases, in addition to their conventional roles in thrombosis, thrombolysis, and apoptotic pathways, are essential regulators of inflammation and are associated with developing cancers. Chemokines drive other inflammatory response pathways with central roles in cell invasion and activation as well as establishing the microenvironment of tumors, modulating immune cell infiltration, cancer cell proliferation, metastasis, and angiogenesis. This review focuses on the mechanisms of action and potential for application of viral immunomodulatory proteins as anticancer therapeutics.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Neoplasms/drug therapy , Viral Proteins/therapeutic use , Animals , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/metabolism , Chemokines/metabolism , Humans , Immunomodulation , Mice , Neoplasms/immunology , Neoplasms/metabolism , Protein Binding , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Receptors, Chemokine/therapeutic use , Serpins/immunology , Serpins/metabolism , Serpins/therapeutic use , Viral Proteins/immunology , Viral Proteins/metabolism , Viruses/immunology , Viruses/metabolism
20.
Methods Enzymol ; 499: 301-29, 2011.
Article in English | MEDLINE | ID: mdl-21683260

ABSTRACT

Over the past 19 years, we have developed a novel myxoma virus-derived anti-inflammatory serine protease inhibitor, termed a serpin, as a new class of immunomodulatory therapeutic. This review will describe the initial identification of viral serpins with anti-inflammatory potential, beginning with preclinical analysis of viral pathogenesis and proceeding to cell and molecular target analyses, and successful clinical trial. The central aim of this review is to describe the development of two serpins, Serp-1 and Serp-2, as a new class of immune modulating drug, from inception to implementation. We begin with an overview of the approaches used for successful mining of the virus for potential serpin immunomodulators in viruses. We then provide a methodological overview of one inflammatory animal model used to test for serpin anti-inflammatory activity followed by methods used to identify cells in the inflammatory response system targeted by these serpins and molecular responses to serpin treatment. Finally, we provide an overview of our findings from a recent, successful clinical trial of the secreted myxomaviral serpin, Serp-1, in patients with unstable inflammatory coronary arterial disease.


Subject(s)
Serpins/metabolism , Viruses/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Clinical Trials as Topic , Humans , Mice , Serpins/genetics , Serpins/pharmacology , Serpins/therapeutic use , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...