Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 85: 131-6, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22947508

ABSTRACT

The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17ß-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem.


Subject(s)
Coloring Agents/chemistry , Endocrine Disruptors/chemistry , Estrogen Antagonists/chemistry , Estrogens/agonists , Water Pollutants, Chemical/chemistry , Biological Assay/methods , Coloring Agents/adverse effects , Endocrine Disruptors/adverse effects , Estrogen Antagonists/adverse effects , Genes, Reporter/drug effects , Tamoxifen/analogs & derivatives , Textiles , Wastewater/chemistry , Water Pollutants, Chemical/adverse effects , Yeasts/drug effects
2.
Thromb Haemost ; 98(2): 375-84, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17721620

ABSTRACT

We have investigated the intracellular mechanisms involved in microtubular remodelling by thrombin and its possible involvement in platelet aggregation and secretion. Platelet stimulation with thrombin induces a time- and concentration-dependent regulation of the microtubular content, which was found to be maximally effective at the concentration 0.1 U/ml. Thrombin (0.1 U/ml) evoked an initial decrease in the microtubule content detectable at 5 seconds (sec) and reached a minimum 10 sec after stimulation. The microtubular content then increased, exceeding basal levels again approximately 30 sec after stimulation. Inhibition of tyrosine phosphatases using vanadate abolished thrombin-induced microtubular depolymerisation while inhibition of tyrosine kinases by methyl-2,5-dihydroxycinnamate prevented microtubule polymerisation. Thrombin activates the cytosolic Bruton's tyrosine kinase (Btk) and Src proteins. Inhibition of Btk or Src by LFM-A13 or PP1, respectively, abolished thrombin-induced microtubular polymerisation, while maintaining intact its ability to induce initial depolymerisation. Microtubular disruption by colchicine significantly reduced thrombin-induced platelet aggregation and ATP secretion. Similar results were observed after inhibition of microtubular disassembly by paclitaxel. These findings indicate that thrombin induces microtubular remodelling by modifying the balance between protein tyrosine phosphorylation and dephosphorylation. The former seems to be required for microtubular polymerisation, while tyrosine dephosphorylation is required for microtubular depolymerisation. Both, initial microtubular disassembly and subsequent polymerisation are required for thrombin-induced platelet aggregation and secretion in human platelets.


Subject(s)
Blood Platelets/cytology , Microtubules/ultrastructure , Thrombin/pharmacology , Tyrosine/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Cells, Cultured , Humans , Kinetics , Microtubules/drug effects , Phosphorylation , Platelet Aggregation/drug effects , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/physiology
3.
Biochem J ; 401(1): 167-74, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-16939417

ABSTRACT

Physiological agonists increase cytosolic free Ca2+ concentration to regulate a number of cellular processes. The platelet thrombin receptors, PAR (protease-activated receptor) 1 PAR-4 and GPIb-IX-V (glycoprotein Ib-IX-V) have been described as potential contributors of thrombin-induced platelet aggregation. Platelets present two separate Ca2+ stores, the DTS (dense tubular system) and acidic organelles, differentiated by the distinct sensitivity of their respective SERCAs (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases) to TG (thapsigargin) and TBHQ [2,5-di-(tert-butyl)-1,4-hydroquinone]. However, the involvement of the thrombin receptors in Ca2+ release from each Ca2+ store remains unknown. Depletion of the DTS using ADP, which releases Ca2+ solely from the DTS, in combination with 10 nM TG, to selectively inhibit SERCA2 located on the DTS reduced Ca2+ release evoked by the PAR-1 agonist, SFLLRN, and the PAR-4 agonist, AYPGKF, by 80 and 50% respectively. Desensitization of PAR-1 and PAR-4 or pre-treatment with the PAR-1 and PAR-4 antagonists SCH 79797 and tcY-NH2 reduced Ca2+ mobilization induced by thrombin, and depletion of the DTS after desensitization or blockade of PAR-1 and PAR-4 had no significant effect on Ca2+ release stimulated by thrombin through the GPIb-IX-V receptor. Converse experiments showed that depletion of the acidic stores using TBHQ reduced Ca2+ release evoked by SFLLRN or AYPGKF, by 20 and 50% respectively, and abolished thrombin-stimulated Ca2+ release through the GPIb-IX-V receptor when PAR-1 and PAR-4 had been desensitized or blocked. Our results indicate that thrombin-induced activation of PAR-1 and PAR-4 evokes Ca2+ release from both Ca2+ stores, while activation of GPIb-IX-V by thrombin releases Ca2+ solely from the acidic compartments in human platelets.


Subject(s)
Blood Platelets/physiology , Calcium/blood , Receptors, Thrombin/physiology , Blood Platelets/cytology , Cell Survival , Cytosol/physiology , Humans , Kinetics , Receptors, Thrombin/blood , Thrombin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...