Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 4(3): 243-256, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32547784

ABSTRACT

Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.

2.
Burns ; 46(6): 1272-1279, 2020 09.
Article in English | MEDLINE | ID: mdl-32534892

ABSTRACT

OBJECTIVES: The Abbreviated Burn Severity Index (ABSI) is a widely used and simple score to predict mortality after burn injuries. On the one hand, significant improvements in intensive care management and surgical treatment result in an increased survival rate. On the other hand, the aging population might lead to an increased injury-related mortality rate. Therefore, the question arises whether the ABSI still accurately predicts survival. METHODS: Data of 14,984 patients from the German Burn Registry from 2015 to 2018 were analyzed to re-evaluate the variables included in the ABSI, identify discrepancies between the predicted age-related probability of survival and the actual survival rate. Descriptive statistics, univariate analysis and binary logistic regression were used to test the variable impact and to establish a modified score. RESULTS: The original ABSI does not accurately predict the survival in the present cohort. In particular, univariate analysis identified age, total body surface area burned, full thickness burn and inhalation injury as significant impactors on survival. Moreover, sex could not be confirmed as significant and was, therefore, excluded from the modified score. The assumption of a linear relation between age and mortality was not correct. We developed a new age scale representing the actual existing relationship. The resulting modified score was significantly more accurate in predicting the probability of survival for all burn score categories. CONCLUSION: The ABSI does not accurately predict probability of survival. Mortality is overestimated in severely burned patients. A modified version was developed that was significantly more accurate in predicting the probability of survival in this cohort.


Subject(s)
Body Surface Area , Burns/mortality , Registries , Smoke Inhalation Injury/epidemiology , Trauma Severity Indices , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Burns/pathology , Burns/therapy , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Logistic Models , Male , Middle Aged , Prognosis , Sex Factors , Young Adult
3.
Front Pediatr ; 8: 613736, 2020.
Article in English | MEDLINE | ID: mdl-33537267

ABSTRACT

Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) serves as the performance benchmark. Methods: The study is based on pediatric burn patient's data sets from an international burn registry (N = 8,542). Mean absolute error and standard error are calculated for each prediction model (rule of thumb, linear regression, and random forest). Factors contributing to a prolonged stay and the relationship between TBSA and the residual error are analyzed. Results: The random forest-based approach and the linear model are statistically superior to the rule of thumb (p < 0.001, resp. p = 0.009). The residual error rises as TBSA increases for all methods. Factors associated with a prolonged LOS are particularly TBSA, depth of burn, and inhalation trauma. Conclusion: Applying AI-based algorithms to data from large international registries constitutes a promising tool for the purpose of prediction in medicine in the future; however, certain prerequisites concerning the underlying data sets and certain shortcomings must be considered.

4.
PLoS One ; 14(12): e0226638, 2019.
Article in English | MEDLINE | ID: mdl-31851707

ABSTRACT

Classical methods for estimating the abundance of fish populations are often both expensive, time-consuming and destructive. Analyses of the environmental DNA (eDNA) present in water samples could alleviate such constraints. Here, we developed protocols to detect and quantify brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) populations by applying the droplet digital PCR (ddPCR) method to eDNA molecules extracted from water samples collected in 28 Swedish mountain lakes. Overall, contemporary fish CPUE (catch per unit effort) estimates from standardized survey gill nettings were not correlated to eDNA concentrations for either of the species. In addition, the measured environmental variables (e.g. dissolved organic carbon concentrations, temperature, and pH) appear to not influence water eDNA concentrations of the studied fish species. Detection probabilities via eDNA analysis showed moderate success (less than 70% for both species) while the presence of eDNA from Arctic char (in six lakes) and brown trout (in one lake) was also indicated in lakes where the species were not detected with the gillnetting method. Such findings highlight the limits of one or both methods to reliably detect fish species presence in natural systems. Additional analysis showed that the filtration of water samples through 1.2 µm glass fiber filters and 0.45 µm mixed cellulose ester filters was more efficient in recovering DNA than using 0.22 µm enclosed polyethersulfone filters, probably due to differential efficiencies of DNA extraction. Altogether, this work showed the potentials and limits of the approach for the detection and the quantification of fish abundance in natural systems while providing new insights in the application of the ddPCR method applied to environmental DNA.


Subject(s)
DNA, Environmental/analysis , Lakes/chemistry , Polymerase Chain Reaction/methods , Trout/genetics , Animals , Population Density , Sweden
5.
Biol Rev Camb Philos Soc ; 94(5): 1786-1808, 2019 10.
Article in English | MEDLINE | ID: mdl-31215138

ABSTRACT

A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.


Subject(s)
Biological Evolution , Developmental Biology , Ecology , Fishes , Adaptation, Biological , Adaptation, Physiological , Animals , Biodiversity , Ecosystem , Environment , Fishes/anatomy & histology , Fishes/classification , Fishes/physiology , Fresh Water , Genetic Speciation , Models, Animal , Phenotype , Polymorphism, Genetic , Selection, Genetic
6.
PLoS One ; 7(8): e43641, 2012.
Article in English | MEDLINE | ID: mdl-22912895

ABSTRACT

Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.


Subject(s)
Ecosystem , Perches/physiology , Predatory Behavior/physiology , Water/chemistry , Animals , Carbon Isotopes/chemistry , Cladocera/physiology , Copepoda/physiology , Feeding Behavior/physiology , Geography , Lakes , Linear Models , Nitrogen Isotopes/chemistry , Perches/anatomy & histology , Population Density , Population Dynamics , Sweden
7.
Ecology ; 93(5): 1173-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22764503

ABSTRACT

Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.


Subject(s)
Food Chain , Fresh Water , Animals , Feeding Behavior , Human Activities , Humans
8.
Oecologia ; 168(3): 807-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21971586

ABSTRACT

Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C(4) plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (δ(13)C). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.


Subject(s)
Food Chain , Lakes , Animals , Carbon/chemistry , Carbon/metabolism , Geologic Sediments , Light , Zooplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...