Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 562: 159-169, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31838352

ABSTRACT

HYPOTHESIS: The wetting behaviour is a key property of a porous medium that controls hydraulic conductivity in multiphase flow. While many porous materials, such as hydrocarbon reservoir rocks, are initially wetted by the aqueous phase, surface active components within the non-wetting phase can alter the wetting state of the solid. Close to the saturation endpoints wetting phase fluid films of nanometre thickness impact the wetting alteration process. The properties of these films depend on the chemical characteristics of the system. Here we demonstrate that surface texture can be equally important and introduce a novel workflow to characterize the wetting state of a porous medium. EXPERIMENTS: We investigated the formation of fluid films along a rock surface imaged with atomic force microscopy using ζ-potential measurements and a computational model for drainage. The results were compared to spontaneous imbibition test to link sub-pore-scale and core-scale wetting characteristics of the rock. FINDINGS: The results show a dependency between surface coverage by oil, which controls the wetting alteration, and the macroscopic wetting response. The surface-area coverage is dependent on the capillary pressure applied during primary drainage. Close to the saturation endpoint, where the change in saturation was minor, the oil-solid contact changed more than 80%.

2.
J Colloid Interface Sci ; 550: 159-169, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31071522

ABSTRACT

The rate of emulsification in surfactant/oil/water systems is influenced by transport of chemicals and mixing of the fluid phases. In porous media applications, complex flow regimes are generated due to three-dimensional connectivity and irregular cross-sections of the pores facilitating the mixing for emulsification. The properties of the resulting emulsified phase depend on the interplay of flow, mixing and emulsification kinetics of the surfactant/oil/water system. Emulsification can be relatively quick. Direct visualization of the process and compositional gradients in three-dimensional pore space during flow requires imaging at few seconds time intervals. In this study, a flow unit was integrated in a synchrotron beamline-based fast X-ray computed micro-tomography set-up. Non-destructive three-dimensional visualization of multi phase flow inside a porous rock at flow conditions became viable. An oil saturated rock sample was first flooded with water, followed by surfactant solution to mobilize the remaining oil by miscible displacement. The sample was continuously imaged during injection; the scans were made at time intervals of 7-60 s. The presence of an emulsified phase in addition to the oil and the aqueous phases required a more advanced image processing workflow compared to the workflows used for the immiscible fluid systems. A newly developed image processing technique was adopted; the grey levels in the images were correlated with the local oil content in the emulsified fluid regions. The visual extractions of the pore space showed that the emulsification occurred within seconds. Compositional gradients were observed in the emulsified phase as the injected surfactant solution reached the remote locations in the pore space. While a significant fraction of the oil was displaced within few seconds, the compositional gradients persisted over several millimeter length for several minutes, illustrating a sequence of mobilization and solubilization of the oil phase. The ability to interpret such compositional gradients in real time in porous space brings capability to study interfacial phenomena in applications where in situ emulsification occurs under flow.

3.
Langmuir ; 35(22): 7322-7331, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31034232

ABSTRACT

Multiphase flow through porous media is important in a wide range of environmental applications such as enhanced oil recovery and geologic storage of CO2. Recent in situ observations of the three-phase contact line between immiscible fluid phases and solid surfaces suggest that existing models may not fully capture the effects of nanoscale surface textures, impacting flow prediction. To better characterize the role of surface roughness in these systems, spontaneous and forced imbibition experiments were carried out using glass capillaries with modified surface roughness or wettability. Dynamic contact angle and interfacial speed deviation, both resulting from stick-slip flow conditions, were measured to understand the impact these microscale dynamics would have on macroscale flow processes. A 2 k factorial experimental design was used to test the ways in which the dynamic contact angle was impacted by the solid surface properties (e.g., wettability, roughness), ionic strength in the aqueous phase, nonaqueous fluid type (water/Fluorinert and water/dodecane), and the presence/absence of a wetting film prior to the imbibition of the wetting phase. The analysis of variance of spontaneous imbibition results suggests that surface roughness and ionic strength play important roles in controlling dynamic contact angle in porous media, more than other factors tested here. The presence of a water film alone does not affect dynamic contact angle, but its interactions with surface roughness and aqueous chemistry have a statistically significant effect. Both forced imbibition and spontaneous imbibition experiments suggest that nanoscale textures can have a larger impact on flow dynamics than chemical wettability. These experimental results are used to extend the Joos and Wenzel equations relating apparent static and dynamic contact angles to roughness, presence of a water film, and water chemistry. The new empirical equation improves prediction accuracy by taking water film and aqueous chemistry into account, reducing error by up to 50%.

SELECTION OF CITATIONS
SEARCH DETAIL
...