Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Handb Clin Neurol ; 146: 47-64, 2017.
Article in English | MEDLINE | ID: mdl-29110779

ABSTRACT

Cerebrospinal fluid (CSF) is a complex fluid filling the ventricular system and surrounding the brain and spinal cord. Although the bulk of CSF is created by the choroid plexus, a significant fraction derives from the interstitial fluid in the brain and spinal cord parenchyma. For this reason, CSF can often be used as a source of pharmacodynamic and prognostic biomarkers to reflect biochemical changes occurring within the brain. For instance, CSF biomarkers can be used to diagnose and track progression of disease as well as understand pharmacokinetic and pharmacodynamic relationships in clinical trials. To facilitate the use of these biomarkers in humans, studies in preclinical species are often valuable. This review summarizes methods for preclinical CSF collection for biomarkers from mice, rats, and nonhuman primates. In addition, dosing directly into CSF is increasingly being used to improve drug levels in the brain. Therefore, this review also summarizes the state of the art in CSF dosing in these preclinical species.


Subject(s)
Biomedical Research/methods , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Neurodegenerative Diseases/cerebrospinal fluid , Specimen Handling/methods , Animals , Biomedical Research/standards , Cerebral Ventricles/metabolism , Extracellular Fluid/metabolism , Humans , Mice , Neurodegenerative Diseases/diagnosis , Rats , Specimen Handling/standards
2.
Bioorg Med Chem Lett ; 25(22): 5040-7, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26497283

ABSTRACT

The synthesis, evaluation, and structure-activity relationships of a class of acyl guanidines which inhibit the BACE-1 enzyme are presented. The prolinyl acyl guanidine chemotype (7c), unlike compounds of the parent isothiazole chemotype (1), yielded compounds with good agreement between their enzymatic and cellular potency as well as a reduced susceptibility to P-gp efflux. Further improvements in potency and P-gp ratio were realized via a macrocyclization strategy. The in vivo profile in wild-type mice and P-gp effects for the macrocyclic analog 21c is presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Guanidines/pharmacology , Macrocyclic Compounds/pharmacology , Proline/analogs & derivatives , Proline/pharmacology , Protease Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid beta-Peptides/biosynthesis , Animals , Caco-2 Cells , Cathepsin D/antagonists & inhibitors , Cathepsin E/antagonists & inhibitors , Dogs , Guanidines/chemical synthesis , Humans , Macrocyclic Compounds/chemical synthesis , Madin Darby Canine Kidney Cells , Male , Mice , Molecular Docking Simulation , Pepsin A/antagonists & inhibitors , Proline/chemical synthesis , Protease Inhibitors/chemical synthesis
3.
PLoS One ; 10(5): e0125614, 2015.
Article in English | MEDLINE | ID: mdl-25933020

ABSTRACT

In Alzheimer's disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Subject(s)
Alzheimer Disease/therapy , Antibodies, Monoclonal/pharmacology , Cognition Disorders/therapy , Immunization, Passive , Phosphoproteins/pharmacology , tau Proteins/antagonists & inhibitors , Alzheimer Disease/chemically induced , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/immunology , Cerebral Cortex/pathology , Cognition Disorders/chemically induced , Cognition Disorders/immunology , Cognition Disorders/pathology , Disease Models, Animal , Exploratory Behavior/drug effects , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/pathology , Male , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/immunology , Neurons/pathology , Primary Cell Culture , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Signal Transduction , Treatment Outcome , tau Proteins/genetics , tau Proteins/immunology
4.
PLoS One ; 9(8): e106050, 2014.
Article in English | MEDLINE | ID: mdl-25153994

ABSTRACT

Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer's disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.


Subject(s)
Alzheimer Disease/genetics , Gene Expression/genetics , Gene Regulatory Networks/genetics , Inflammation/genetics , tau Proteins/genetics , Animals , Chromosomes, Human, Pair 17/genetics , Disease Models, Animal , Female , Frontotemporal Dementia/genetics , Hippocampus/metabolism , Humans , Mice , Microglia/metabolism , Microtubule-Associated Proteins/genetics , Neurodegenerative Diseases/genetics , Neurons/metabolism , Parkinsonian Disorders/genetics
5.
J Pharmacol Exp Ther ; 344(3): 686-95, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23275065

ABSTRACT

A hallmark of Alzheimer's disease (AD) pathology is the accumulation of brain amyloid ß-peptide (Aß), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aß and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling. Avagacestat (BMS-708163) is a GSI developed for selective inhibition of APP over Notch cleavage. Avagacestat inhibition of APP and Notch cleavage was evaluated in cell culture by measuring levels of Aß and human Notch proteins. In rats, dogs, and humans, selectivity was evaluated by measuring plasma blood concentrations in relation to effects on cerebrospinal fluid (CSF) Aß levels and Notch-related toxicities. Measurements of Notch-related toxicity included goblet cell metaplasia in the gut, marginal-zone depletion in the spleen, reductions in B cells, and changes in expression of the Notch-regulated hairy and enhancer of split homolog-1 from blood cells. In rats and dogs, acute administration of avagacestat robustly reduced CSF Aß40 and Aß42 levels similarly. Chronic administration in rats and dogs, and 28-day, single- and multiple-ascending-dose administration in healthy human subjects caused similar exposure-dependent reductions in CSF Aß40. Consistent with the 137-fold selectivity measured in cell culture, we identified doses of avagacestat that reduce CSF Aß levels without causing Notch-related toxicities. Our results demonstrate the selectivity of avagacestat for APP over Notch cleavage, supporting further evaluation of avagacestat for AD therapy.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/antagonists & inhibitors , Oxadiazoles/pharmacology , Sulfonamides/pharmacology , Adolescent , Adult , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cells, Cultured , Dogs , Female , Humans , Male , Middle Aged , Rats , Rats, Sprague-Dawley , Receptors, Notch/metabolism , Signal Transduction/drug effects , Young Adult
7.
J Neurosci ; 32(21): 7137-45, 2012 May 23.
Article in English | MEDLINE | ID: mdl-22623658

ABSTRACT

Tau is a microtubule (MT)-stabilizing protein that is altered in Alzheimer's disease (AD) and other tauopathies. It is hypothesized that the hyperphosphorylated, conformationally altered, and multimeric forms of tau lead to a disruption of MT stability; however, direct evidence is lacking in vivo. In this study, an in vivo stable isotope-mass spectrometric technique was used to measure the turnover, or dynamicity, of MTs in brains of living animals. We demonstrated an age-dependent increase in MT dynamics in two different tau transgenic mouse models, 3xTg and rTg4510. MT hyperdynamicity was dependent on tau expression, since a reduction of transgene expression with doxycycline reversed the MT changes. Treatment of rTg4510 mice with the epothilone, BMS-241027, also restored MT dynamics to baseline levels. In addition, MT stabilization with BMS-241027 had beneficial effects on Morris water maze deficits, tau pathology, and neurodegeneration. Interestingly, pathological and functional benefits of BMS-241027 were observed at doses that only partially reversed MT hyperdynamicity. Together, these data suggest that tau-mediated loss of MT stability may contribute to disease progression and that very low doses of BMS-241027 may be useful in the treatment of AD and other tauopathies.


Subject(s)
Cognition Disorders/drug therapy , Epothilones/therapeutic use , Microtubules/pathology , Nerve Degeneration/drug therapy , Tauopathies/drug therapy , Tubulin Modulators/therapeutic use , tau Proteins/physiology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognition Disorders/complications , Cognition Disorders/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/psychology , Epothilones/pharmacology , Female , Hippocampus/drug effects , Hippocampus/pathology , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microtubules/drug effects , Tauopathies/complications , Tauopathies/genetics , Tauopathies/pathology , Tauopathies/psychology , Tubulin Modulators/pharmacology , tau Proteins/antagonists & inhibitors , tau Proteins/biosynthesis , tau Proteins/genetics
8.
Bioorg Med Chem Lett ; 21(22): 6909-15, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974952
9.
Bioorg Med Chem Lett ; 21(22): 6916-24, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21782431

ABSTRACT

The synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n. The full in vivo profile of 1i in rats and 28n in Tg 2576 mice is presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactams/chemistry , Lactams/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Animals , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Lactams/chemical synthesis , Lactams/pharmacokinetics , Mice , Models, Molecular , Rats , Structure-Activity Relationship
10.
J Alzheimers Dis ; 24 Suppl 2: 127-41, 2011.
Article in English | MEDLINE | ID: mdl-21422517

ABSTRACT

Levels of tau in cerebrospinal fluid (CSF) are elevated in Alzheimer's disease (AD) patients. It is believed this elevation is related to the tau pathology and neurodegeneration observed in AD, but not all tauopathies have increased CSF tau. There has been little pre-clinical work to investigate mechanisms of increased CSF tau due to the difficulty in collecting CSF samples from mice, the most commonly used pre-clinical models. We developed methods to collect CSF from mice without contamination from tau in brain tissue, which is approximately 50,000 fold more abundant in brain than CSF. Using these methods, we measured CSF tau from 3xTg, Tg4510, and Tau Alone transgenic mice. All three lines of mice showed age-dependent increases in CSF tau. They varied in phenotype from undetectable to severe tau pathology and neurodegeneration, suggesting that degenerating neurons are unlikely to be the only source of pathologic CSF tau. Overall, CSF tau levels mirrored expression levels and changes of tau in the brain, but they did not always correlate exactly. CSF tau was often more sensitive to changes in brain transgene expression and pathology. In addition, we also developed ELISA assays specific to different regions of the tau protein. We used these assays to provide evidence that CSF tau exists as fragments, with little intact C-terminus and partial loss of the N-terminus. Taken together, these assays and mouse models may be used to facilitate a deeper understanding of CSF tau in neurodegenerative disease.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Age Factors , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Biomarkers/cerebrospinal fluid , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Doxycycline/pharmacology , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofilament Proteins/metabolism , Presenilin-1/genetics , RNA, Messenger/metabolism , Tubulin/metabolism , tau Proteins/genetics
11.
Bioorg Med Chem Lett ; 21(1): 537-41, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21078556

ABSTRACT

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aß levels, but did not lower rat brain Aß due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Subject(s)
Amines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Indoles/chemical synthesis , Protease Inhibitors/chemistry , Pyridines/chemical synthesis , Amines/chemical synthesis , Amines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Indoles/chemistry , Indoles/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship
12.
ACS Med Chem Lett ; 1(3): 120-4, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-24900185

ABSTRACT

During the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-ß precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aß40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced Aß40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.

13.
Mol Neurobiol ; 37(2-3): 171-86, 2008.
Article in English | MEDLINE | ID: mdl-18581273

ABSTRACT

Therapeutic approaches for Alzheimer's disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa beta-amyloid (Abeta) peptides, with the more amyloidogenic, 42 amino acid form (Abeta42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Abeta42, amyloid therapeutics aim to reduce the amount of toxic Abeta42 aggregates. Amyloid-based therapies include gamma-secretase inhibitors and modulators, BACE inhibitors, aggregation blockers, catabolism inducers, and anti-Abeta biologics. Tangles are composed of paired helical filaments of hyperphosphorylated tau protein. Tau-based therapeutics include kinase inhibitors, microtubule stabilizers, and catabolism inducers. Therapeutic strategies for neurodegeneration target multiple mechanisms, including excitotoxicity, mitochondrial dysfunction, oxidative damage, and inflammation or stimulation of neuronal viability. Although not disease modifying, cognition enhancers are important to treat the symptom of dementia. Strategies for cognition enhancement include cholinesterase inhibitors, and other approaches to enhance the signaling of cholinergic and glutamatergic neurons. In summary, plaques, tangles, neurodegeneration and dementia guide the development of multiple therapeutic approaches for AD and are the subject of this review.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Humans , Nootropic Agents/therapeutic use , tau Proteins/metabolism
14.
J Biol Chem ; 283(34): 22992-3003, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18574238

ABSTRACT

The amyloid-beta (Abeta) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-beta precursor protein (APP) through consecutive proteolytic cleavages by beta-site APP-cleaving enzyme and gamma-secretase. Unexpectedly gamma-secretase inhibitors can increase the secretion of Abeta peptides under some circumstances. This "Abeta rise" phenomenon, the same inhibitor causing an increase in Abeta at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the Abeta rise depends on the beta-secretase-derived C-terminal fragment of APP (betaCTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of Abeta, known as "p3," formed by alpha-secretase cleavage, did not exhibit a rise. In addition to the Abeta rise, low betaCTF or C99 expression decreased gamma-secretase inhibitor potency. This "potency shift" may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, gamma-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of Abeta under conditions of low substrate expression. The Abeta rise was also observed in rat brain after dosing with the gamma-secretase inhibitor BMS-299897. The Abeta rise and potency shift are therefore relevant factors in the development of gamma-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the Abeta rise, including the "incomplete processing" and endocytic models, are discussed.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Regulation, Enzymologic , Animals , Brain/metabolism , Butyrates/pharmacology , Cell Line , Enzyme Inhibitors/pharmacology , Female , Humans , Hydrocarbons, Halogenated/pharmacology , Mice , Protein Binding , Protein Structure, Tertiary , Rats , Substrate Specificity
15.
J Pharmacol Exp Ther ; 326(2): 502-13, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18499745

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain , Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/blood , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/physiology , Blotting, Western , Brain/drug effects , Brain/enzymology , Brain/metabolism , Cell Line , Cell Membrane Permeability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Knockout , Molecular Structure , Peptide Fragments/blood , Protein Binding , Substrate Specificity
16.
Bioorg Med Chem Lett ; 18(2): 464-8, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18178084

ABSTRACT

The synthesis and gamma-secretase inhibition data for a series of carbamate-appended N-alkylsulfonamides are described. Carbamate 54 was found to significantly reduce brain Abeta in transgenic mice. 54 was also found to possess markedly improved brain levels in transgenic mice compared to previously disclosed 1 and 2.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Carbamates/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Mice , Mice, Transgenic , Structure-Activity Relationship
19.
J Pharmacol Exp Ther ; 323(1): 102-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17640949

ABSTRACT

Reduction of brain beta-amyloid peptide (Abeta) synthesis by gamma-secretase inhibitors is a promising approach for the treatment of Alzheimer's disease. However, measurement of central pharmacodynamic effects in the Alzheimer's disease patient will be a challenge. Determination of drug occupancy may facilitate the analysis of efficacy of gamma-secretase inhibitors in a clinical setting. In this study, the relationship of gamma-secretase site occupancy and brain Abeta40 reduction by gamma-secretase inhibitors was examined in Tg2576 mice. [3H](2R,3S)-2-Isobutyl-N1-((S)-1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)-3-propylsuccinamide (IN973) was used as a gamma-secretase radioligand, since it has been shown to bind to gamma-secretase in rat, rhesus, and human brains with high affinity and specificity. We extended these findings by showing that [3H]IN973 bound to gamma-secretase in Tg2576 brains with an affinity, specificity, and regional localization very similar to the other species. To quantify gamma-secretase occupancy by gamma-secretase inhibitors, an ex vivo binding assay was developed using [3H]IN973 and frozen brain sections from drug-treated mice. Gamma-secretase occupancy and brain Abeta40 reduction were found to be highly correlated in animals dosed with either 2-[(1R)-1-[[4-chlorophenyl)-sulfonyl](2,5-difluorophenyl)amino] ethyl]-5-fluoro-benzenepropanoic acid (BMS-299897) or (S)-2-((S)-2-(3,5-difluorophenyl)-2-hydroxyacetamido)-N-((S,Z)-3-methyl-4-oxo-4,5-dihydro-3H-benzo[d][1,2]diazepin-5-yl)propanamide (BMS-433796) over a wide range of doses and times postdose, with the exception of the earliest times postdose. This lag in Abeta40 response to gamma-secretase inhibition is probably related to the delayed clearance of previously produced Abeta40. The excellent correlation between brain Abeta40 and gamma-secretase occupancy suggests that a positron emission tomography ligand for gamma-secretase could be a valuable biomarker to determine whether gamma-secretase inhibitors bind to their target in humans.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Protein Precursor/biosynthesis , Brain/enzymology , Enzyme Inhibitors/pharmacology , Amyloid beta-Protein Precursor/genetics , Animals , Binding Sites , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Ligands , Mice , Mice, Transgenic , Molecular Structure , Radioligand Assay , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...