Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(6): 3227-34, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24810791

ABSTRACT

Understanding light absorption in individual nanostructures is crucial for optimizing the light-matter interaction at the nanoscale. Here, we introduce a technique named time-reversed Fourier microscopy that enables the measurement of the angle-dependent light absorption in dilute arrays of uncoupled semiconductor nanowires. Because of their large separation, the nanowires have a response that can be described in terms of individual nanostructures. The geometry of individual nanowires makes them behave as nanoantennas that show a strong interaction with the incident light. The angle-dependent absorption measurements, which are compared to numerical simulations and Mie scattering calculations, show the transition from guided-mode to Mie-resonance absorption in individual nanowires and the relative efficiency of these two absorption mechanisms in the same nanostructures. Mie theory fails to describe the absorption in finite-length vertical nanowires illuminated at small angles with respect to their axis. At these angles, the incident light is efficiently absorbed after being coupled to guided modes. Our findings are relevant for the design of nanowire-based photodetectors and solar cells with an optimum efficiency.

2.
Nano Lett ; 12(11): 5481-6, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23030698

ABSTRACT

We experimentally demonstrate the directional emission of polarized light from single semiconductor nanowires. The directionality of this emission has been directly determined with Fourier microphotoluminescence measurements of vertically oriented InP nanowires. Nanowires behave as efficient optical nanoantennas, with emission characteristics that are not only given by the material but also by their geometry and dimensions. By means of finite element simulations, we show that the radiated power can be enhanced for frequencies and diameters at which leaky modes in the structure are present. These leaky modes can be associated to Mie resonances in the cylindrical structure. The radiated power can be also inhibited at other frequencies or when the coupling of the emission to the resonances is not favored. We anticipate the relevance of these results for the development of nanowire photon sources with optimized efficiency and/or controlled emission by the geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...