Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Bone Miner Res ; 38(11): 1689-1699, 2023 11.
Article in English | MEDLINE | ID: mdl-37732678

ABSTRACT

Opportunistic screening is a new promising technique to identify individuals at high risk for osteoporotic fracture using computed tomography (CT) scans originally acquired for an clinical purpose unrelated to osteoporosis. In these CT scans, a calibration phantom traditionally required to convert measured CT values to bone mineral density (BMD) is missing. As an alternative, phantomless calibration has been developed. This study aimed to review the principles of four existing phantomless calibration methods and to compare their performance against the gold standard of simultaneous calibration (ΔBMD). All methods were applied to a dataset of 350 females scanned with a highly standardized CT protocol (DS1) and to a second dataset of 114 patients (38 female) from clinical routine covering a large range of CT acquisition and reconstruction parameters (DS2). Three of the phantomless calibration methods must be precalibrated with a reference dataset containing a calibration phantom. Sixty scans from DS1 and 57 from DS2 were randomly selected for this precalibration. For each phantomless calibration method first the best combination of internal reference materials (IMs) was selected. These were either air and blood or subcutaneous adipose tissue, blood, and cortical bone. In addition, for phantomless calibration a fifth method based on average calibration parameters derived from the reference dataset was applied. For DS1, ΔBMD results (mean ± standard deviation) for the phantomless calibration methods requiring a precalibration ranged from 0.1 ± 2.7 mg/cm3 to 2.4 ± 3.5 mg/cm3 with similar means but significantly higher standard deviations for DS2. Performance of the phantomless calibration method, which does not require a precalibration was worse (ΔBMD DS1: 12.6 ± 13.2 mg/cm3 , DS2: 0.5 ± 8.8 mg/cm3 ). In conclusion, phantomless BMD calibration performs well if precalibrated with a reference dataset. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density , Osteoporosis , Humans , Female , Calibration , Tomography, X-Ray Computed/methods , Osteoporosis/diagnostic imaging , Minerals , Absorptiometry, Photon
3.
Curr Osteoporos Rep ; 21(1): 65-76, 2023 02.
Article in English | MEDLINE | ID: mdl-36435912

ABSTRACT

PURPOSE OF REVIEW: Opportunistic screening is a combination of techniques to identify subjects of high risk for osteoporotic fracture using routine clinical CT scans prescribed for diagnoses unrelated to osteoporosis. The two main components are automated detection of vertebral fractures and measurement of bone mineral density (BMD) in CT scans, in which a phantom for calibration of CT to BMD values is not used. This review describes the particular challenges of opportunistic screening and provides an overview and comparison of current techniques used for opportunistic screening. The review further outlines the performance of opportunistic screening. RECENT FINDINGS: A wide range of technologies for the automatic detection of vertebral fractures have been developed and successfully validated. Most of them are based on artificial intelligence algorithms. The automated differentiation of osteoporotic from traumatic fractures and vertebral deformities unrelated to osteoporosis, the grading of vertebral fracture severity, and the detection of mild vertebral fractures is still problematic. The accuracy of automated fracture detection compared to classical radiological semi-quantitative Genant scoring is about 80%. Accuracy errors of alternative BMD calibration methods compared to simultaneous phantom-based calibration used in standard quantitative CT (QCT) range from below 5% to about 10%. The impact of contrast agents, frequently administered in clinical CT on the determination of BMD and on fracture risk determination is still controversial. Opportunistic screening, the identification of vertebral fracture and the measurement of BMD using clinical routine CT scans, is feasible but corresponding techniques still need to be integrated into the clinical workflow and further validated with respect to the prediction of fracture risk.


Subject(s)
Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Humans , Spinal Fractures/diagnostic imaging , Artificial Intelligence , Osteoporosis/diagnostic imaging , Bone Density , Tomography, X-Ray Computed , Absorptiometry, Photon/methods
4.
Bone ; 157: 116304, 2022 04.
Article in English | MEDLINE | ID: mdl-34973497

ABSTRACT

Opportunistic screening using existing CT images may be a new strategy to identify subjects at increased risk for osteoporotic fracture. Low bone mineral density (BMD) is a key parameter but routine clinical CT scans do not include a calibration phantom to calculate BMD from the measured CT values. An alternative is internal or phantomless calibration, which is based on the CT values of air and of internal tissues of the subject such as blood, muscle or adipose tissue. However, the composition and as a consequence the CT values of these so-called internal calibration materials vary among subjects, which introduces additional BMD accuracy errors compared to phantom based calibration. The objective of this study was to quantify these accuracy errors and to identify optimum combinations of internal calibration materials (IM) for BMD assessments in opportunistic screening. Based on the base material decomposition theory we demonstrate how BMD can be derived from the CT values of the internal calibration materials. 121 CT datasets of the lumbar spine form postmenopausal women were used to determine the population variance of blood assessed in the aorta or the inferior vena cava, skeletal muscle of the erector spinae or psoas, subcutaneous adipose tissue (SAT) and air. The corresponding standard deviations were used for error propagation to determine phantomless calibration related BMD accuracy errors. Using a CT value of 150 HU, a typical value of trabecular bone, simulated BMD accuracy errors for most IM combinations containing air as one of the two base materials were below 5% or 6 mg/cm3. The lowest errors were determined for the combination of blood and air (<2 mg/cm3). The combination of blood and skeletal muscle resulted in higher errors (>10.5% or >12 mg/cm3) and is not recommended. Due to possible age-related differences in tissue composition, the selection of IMs is suggested to be adapted according to the measured subject. In younger subjects without significant aortic calcifications, air and blood of the aorta may be the best combination whereas in elderly subjects, air and SAT (error of 4%) may be preferable. The use of skeletal muscle as one of the two IMs is discouraged, in particular in elderly subjects because of varying fatty infiltration. A practical implementation of the internal calibration with different IM pairs confirmed the theoretical results. In summary, compared to a phantom based calibration the phantomless approach used for opportunistic screening creates additional BMD accuracy errors of 2% or more, dependent on the used internal reference tissues. The impact on fracture prediction still must be evaluated.


Subject(s)
Bone Density , Osteoporotic Fractures , Absorptiometry, Photon , Aged , Calibration , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...