Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(41): 23602-23609, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34652363

ABSTRACT

The use of simultaneous neutron powder diffraction (NPD) and microwave characterisation can provide more information than the use of either technique individually; for example, it enables the differentiation of physisorbed and metal-coordinated species. Many possible experiments using these combined techniques can benefit from the addition of a heat source for sample heating, such as real-time measurements of solvent removal, or chemical and catalytic reactions. This paper documents the design of equipment to conduct simultaneous NPD and 2.5 GHz microwave cavity resonance techniques at elevated temperatures and confirms the use of this equipment for successful desolvation of a metal-organic framework (MOF) sample at 150 °C. The high sensitivity of microwave characterisation of lossy and polar materials is demonstrated at levels much lower than those that can be detected using crystallographic techniques.

2.
J Magn Reson ; 310: 106644, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31812887

ABSTRACT

A unique dual mode X-band Continuous Wave (CW) EPR resonator designed for simultaneous EPR measurement and rapid microwave (MW) induced sample heating is described. Chemical reactions subjected to a flow of energy and matter can be perturbed away from the thermodynamic equilibrium by imposing a rapid shock or physical change to the system. Depending on the magnitude of the perturbation, these changes can dictate the subsequent evolution of the entire system, allowing for instance to populate non-equilibrium reactive intermediate states. Temperature jump (T-jump) experiments are a common method to achieve such perturbations. Most T-jump experiments are based on Joule Heating methods or IR lasers. Here we demonstrate the principle of rapid sample heating based on microwaves. The benefits of MW heating include (i) rapid and efficient heating (i.e. using a tuned resonant cavity, >99% efficient power transfer to the sample can be achieved), and (ii) volumetric heating (i.e. the entire sample volume rises in temperature at once, since heat is generated in the sample instead of being transferred to it). Accordingly, the key concept of the design is the use of a cavity resonator allowing EPR detection (at 9.5 GHz) and simultaneous sample heating (at 6.1 GHz). Temperature increments of 50 °C within a few seconds are possible. This is evidenced and illustrated here by probing the temperature-induced variation of the rotational dynamics of 16-doxyl stearic acid methyl ester (16-DSE) spin probe grafted on the surface of sodium dodecyl sulphate (SDS) micelles in water, as well as copper (II) acetylacetonate in chloroform. Rapid changes in the rotational dynamics of the paramagnetic centres provide direct evidence for the in situ and simultaneous EPR measurement-heating capabilities of the resonator. Improvements afforded by the use of pulsed MW sources will enable faster heating time scales to be achieved. In the longer term, this current study demonstrates the simple and direct possibilities for using MW heating as a means of performing T-jump experiments.

3.
Phys Chem Chem Phys ; 20(15): 10460-10469, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29617020

ABSTRACT

Ammonia absorption has been investigated in metal-organic frameworks (UiO-67, HKUST-1 and CPO-27-Co) using custom-built apparatus that allows simultaneous neutron powder diffraction (NPD), microwave dielectric characterisation and out-gas mass spectroscopy of solid-state materials during ammonia adsorption. Deuterated ammonia was flowed through the sample and absorption monitored using mass flow meters and mass spectroscopy. Argon gas was then flowed through the ammoniated sample to cause ammonia desorption. Changes in structure found from NPD measurements were compared to changes in dielectric characteristics to differentiate physisorbed and metal-coordinated ammonia, as well as determine decomposition of sample materials. The results of these studies allow the identification of materials with useful ammonia storage properties and provides a new metric for the measurement of gas absorption within mesoporous solids.

SELECTION OF CITATIONS
SEARCH DETAIL
...