Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 31(2): 731-745, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32710103

ABSTRACT

The prefrontal cortex (PFC) plays a key role in higher order cognitive functions and psychiatric disorders such as autism, schizophrenia, and depression. In the PFC, the two major classes of neurons are the glutamatergic pyramidal (Pyr) cells and the GABAergic interneurons such as fast-spiking (FS) cells. Despite extensive electrophysiological, morphological, and pharmacological studies of the PFC, the therapeutically utilized drug targets are restricted to dopaminergic, glutamatergic, and GABAergic receptors. To expand the pharmacological possibilities as well as to better understand the cellular and network effects of clinically used drugs, it is important to identify cell-type-selective, druggable cell surface proteins and to link developed drug candidates to Pyr or FS cell targets. To identify the mRNAs of such cell-specific/enriched proteins, we performed ultra-deep single-cell mRNA sequencing (19 685 transcripts in total) on electrophysiologically characterized intact PFC neurons harvested from acute brain slices of mice. Several selectively expressed transcripts were identified with some of the genes that have already been associated with cellular mechanisms of psychiatric diseases, which we can now assign to Pyr (e.g., Kcnn2, Gria3) or FS (e.g., Kcnk2, Kcnmb1) cells. The earlier classification of PFC neurons was also confirmed at mRNA level, and additional markers have been provided.


Subject(s)
Membrane Proteins/metabolism , Neurons/physiology , Pyramidal Cells/physiology , RNA, Messenger/metabolism , Transcription, Genetic/genetics , Animals , Electrophysiological Phenomena , Genetic Markers , Membrane Proteins/drug effects , Mice , Mice, Inbred C57BL , Nerve Net/drug effects , Nerve Net/physiology , Neurons/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Pyramidal Cells/drug effects , Transcription, Genetic/drug effects
3.
Alzheimers Dement (N Y) ; 5: 953-963, 2019.
Article in English | MEDLINE | ID: mdl-31921969

ABSTRACT

INTRODUCTION: Multinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a blood-based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3-years. METHODS: The NRI included erythrocyte n-3 polyunsaturated fatty acids (n-3 PUFA 22:6n-3 and 20:5n-3), serum 25-hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0-3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixed-effects models. RESULTS: Eighty percent had at lease one nutritional risk factor for cognitive decline (NRI ≥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (ß = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRI-1: ß = -0.04 SU/y, P = .03; NRI-2: ß = -0.08 SU/y, P < .0001; and NRI-3: ß = -0.11 SU/y, P = .0008). DISCUSSION: Identifying and addressing these well-established nutritional risk factors may reduce age-related cognitive decline in older adults; an observation that warrants further study.

4.
Proc Natl Acad Sci U S A ; 114(36): 9731-9736, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827363

ABSTRACT

When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tb regulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.


Subject(s)
Caloric Restriction/adverse effects , Hypothermia/physiopathology , Receptor, IGF Type 1/physiology , Aging/physiology , Animals , Energy Metabolism/physiology , Female , Gene Dosage , Homeostasis/physiology , Hypothermia/etiology , Hypothermia/prevention & control , Longevity/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Podophyllotoxin/analogs & derivatives , Podophyllotoxin/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/genetics , Sex Characteristics , Signal Transduction/physiology
5.
F1000Res ; 6: 413, 2017.
Article in English | MEDLINE | ID: mdl-28491285

ABSTRACT

The basic strategy for focusing exclusively on genetically identified targets for intervening in late life dementias was formulated 30 years ago.  Three decades and billions of dollars later, all efforts at disease-modifying interventions have failed.  Over that same period, evidence has accrued pointing to dementias as late-life clinical phenotypes that begin as midlife pathologies.  Effective prevention therefore may need to begin in midlife, in order to succeed. No current interventions are sufficiently safe to justify their use in midlife dementia prevention trials.  Observational studies could be informative in testing the proposal that amyloid imaging and APOEε 4 genotype can predict those who are highly likely to develop Alzheimer's disease and in whom higher risk interventions might be justifiable. A naturally occurring, diet-responsive cognitive decline syndrome occurs in canines that closely resembles human Alzheimer's.  Canine cognitive dysfunction could be useful in estimating how early intervention must begin in order to succeed.  This model may also help identify and assess novel targets and strategies.  New approaches to dementia prevention are urgently required, since none of the world's economies can sustain the costs of caring for this epidemic of brain failure that is devastating half of the over 85-year-olds globally.

6.
Cell Rep ; 18(3): 791-803, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28099855

ABSTRACT

Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems.


Subject(s)
Brain/metabolism , Transcriptome , Adult , Aged , Brain/cytology , Cells, Cultured , Female , Humans , Male , MicroRNAs/metabolism , Microglia/cytology , Microglia/metabolism , Middle Aged , Neurons/cytology , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Principal Component Analysis , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis , Young Adult
7.
Science ; 353(6306): 1363-1364, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27708024
8.
Oncotarget ; 7(11): 12823-39, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26871479

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest membrane protein family implicated in the therapeutic intervention of a variety of diseases including cancer. Exploration of biological actions of orphan GPCRs may lead to the identification of new targets for drug discovery. This study investigates potential roles of GPR160, an orphan GPCR, in the pathogenesis of prostate cancer. The transcription levels of GPR160 in the prostate cancer tissue samples and cell lines, such as PC-3, LNCaP, DU145 and 22Rv1 cells, were significantly higher than that seen in normal prostate tissue and cells. Knockdown of GPR160 by lentivirus-mediated short hairpin RNA constructs targeting human GPR160 gene (ShGPR160) resulted in prostate cancer cell apoptosis and growth arrest both in vitro and in athymic mice. Differential gene expression patterns in PC-3 cells infected with ShGPR160 or scramble lentivirus showed that 815 genes were activated and 1193 repressed. Functional annotation of differentially expressed genes (DEGs) revealed that microtubule cytoskeleton, cytokine activity, cell cycle phase and mitosis are the most evident functions enriched by the repressed genes, while regulation of programmed cell death, apoptosis and chemotaxis are enriched significantly by the activated genes. Treatment of cells with GPR160-targeting shRNA lentiviruses or duplex siRNA oligos increased the transcription of IL6 and CASP1 gene significantly. Our data suggest that the expression level of endogenous GPR160 is associated with the pathogenesis of prostate cancer.


Subject(s)
Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Prostatic Neoplasms/pathology , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line, Tumor , Gene Expression Profiling , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/metabolism , Transcriptome
9.
FASEB J ; 30(1): 81-92, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26304220

ABSTRACT

Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides ß3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in <50% of BAs) in mouse and have shown single-cell variability (>1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought.


Subject(s)
Adipocytes, Brown/cytology , Adipose Tissue, Brown/metabolism , Homeostasis/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Adipose Tissue, Brown/cytology , Animals , Ion Channels/metabolism , Male , Membrane Proteins/metabolism , Mice , Obesity/metabolism , Thermogenesis/physiology , Transcriptome
10.
Genome Biol ; 16: 122, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26056000

ABSTRACT

BACKGROUND: Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. RESULTS: We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. CONCLUSIONS: Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.


Subject(s)
Genetic Variation , Transcriptome , Animals , Cells, Cultured , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred C57BL , RNA Stability , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , Single-Cell Analysis
12.
FASEB J ; 28(2): 771-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24192459

ABSTRACT

Despite the recognized importance of the dorsal raphe (DR) serotonergic (5-HT) nuclei in the pathophysiology of depression and anxiety, the molecular components/putative drug targets expressed by these neurons are poorly characterized. Utilizing the promoter of an ETS domain transcription factor that is a stable marker of 5-HT neurons (Pet-1) to drive 5-HT neuronal expression of YFP, we identified 5-HT neurons in live acute slices. We isolated RNA from single 5-HT neurons in the ventromedial and lateral wings of the DR and performed single-cell RNA-Seq analysis identifying >500 G-protein coupled receptors (GPCRs) including receptors for classical transmitters, lipid signals, and peptides as well as dozens of orphan-GPCRs. Using these data to inform our selection of receptors to assess, we found that oxytocin and lysophosphatidic acid 1 receptors are translated and active in costimulating, with the α1-adrenergic receptor, the firing of DR 5-HT neurons, while the effects of histamine are inhibitory and exerted at H3 histamine receptors. The inhibitory histamine response provides evidence for tonic in vivo histamine inhibition of 5-HT neurons. This study illustrates that unbiased single-cell transcriptomics coupled with functional analyses provides novel insights into how neurons and neuronal systems are regulated.


Subject(s)
Serotonergic Neurons/metabolism , Animals , Electrophysiology , In Vitro Techniques , Male , Mice , Receptors, G-Protein-Coupled/metabolism , Serotonin/metabolism
13.
Genome Biol ; 14(7): R78, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23895045

ABSTRACT

BACKGROUND: Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples. RESULTS: We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies. CONCLUSIONS: The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Gene Expression Profiling , MicroRNAs/blood , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Brain/metabolism , Case-Control Studies , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Real-Time Polymerase Chain Reaction , Reproducibility of Results
14.
J Neurochem ; 127(1): 114-23, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23600864

ABSTRACT

Neuropeptide galanin and its three G-protein coupled receptors, galanin receptor type 1-galanin receptor type 3 (GalR1-GalR3), are involved in the regulation of numerous physiological and disease processes, and thus represent tremendous potential in neuroscience research and novel drug lead development. One of the areas where galanin is involved is depression. Previous studies have suggested that activation of GalR2 leads to attenuation of depression-like behavior. Unfortunately, lack of in vivo usable subtype specific ligands hinders testing the role of galanin in depression mechanisms. In this article, we utilize an approach of increasing in vivo usability of peptide-based ligands, acting upon CNS. Thus, we have synthesized a series of novel systemically active galanin analogs, with modest preferential binding toward GalR2. We have shown that specific chemical modifications to the galanin backbone increase brain levels upon i.v. injection of the peptides. Several of the new peptides, similar to a common clinically used antidepressant medication imipramine, exerted antidepressant-like effect in forced swim test, a mouse model of depression, at a surprisingly low dose range (< 0.5 mg/kg). We chose one of the peptides, J18, for more thorough study, and showed its efficacy also in another mouse depression model (tail suspension test), and demonstrated that its antidepressant-like effect upon i.v. administration can be blocked by i.c.v. galanin receptor antagonist M35. The effect of the J18 was also abolished in GalR2KO animals. All this suggests that systemically administered peptide analog J18 exerts its biological effect through activation of GalR2 in the brain. The novel galanin analogs represent potential drug leads and a novel pharmaceutical intervention for depression.


Subject(s)
Behavior, Animal/drug effects , Depression/psychology , Receptor, Galanin, Type 2/drug effects , Amino Acid Sequence , Animals , Antidepressive Agents, Tricyclic/pharmacology , Binding, Competitive/drug effects , Cell Line, Tumor , Drug Design , Female , Galanin/metabolism , Hindlimb Suspension , Humans , Imipramine/pharmacology , Ligands , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/pharmacology , Swimming/psychology , Tissue Distribution
15.
Acta Pharmacol Sin ; 34(7): 880-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23624758

ABSTRACT

The task of finding selective and stable peptide receptor agonists with low molecular weight, desirable pharmacokinetic properties and penetrable to the blood-brain barrier has proven too difficult for many highly coveted drug targets, including receptors for endothelin, vasoactive intestinal peptide and galanin. These receptors and ligand-gated ion channels activated by structurally simple agonists such as glutamate, glycine and GABA present such a narrow chemical space that the design of subtype-selective molecules capable of distinguishing a dozen of glutamate and GABA receptor subtypes and possessing desirable pharmacokinetic properties has also been problematic. In contrast, the pharmaceutical industry demonstrates a remarkable success in developing 1,4-benzodiazepines, positive allosteric modulators (PMAs) of the GABAA receptor. They were synthesized over 50 years ago and discovered to have anxiolytic potential through an in vivo assay. As exemplified by Librium, Valium and Dormicum, these allosteric ligands of the receptor became the world's first blockbuster drugs. Through molecular manipulation over the past 2 decades, including mutations and knockouts of the endogenous ligands or their receptors, and by in-depth physiological and pharmacological studies, more peptide and glutamate receptors have become well-validated drug targets for which an agonist is sought. In such cases, the pursuit for PAMs has also intensified, and a working paradigm to identify drug candidates that are designed as PAMs has emerged. This review, which focuses on the general principles of finding PAMs of peptide receptors in the 21st century, describes the workflow and some of its resulting compounds such as PAMs of galanin receptor 2 that act as potent anticonvulsant agents.


Subject(s)
Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anticonvulsants/metabolism , Receptors, GABA-A/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Anti-Anxiety Agents/chemistry , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Galanin-Like Peptide/chemistry , Galanin-Like Peptide/metabolism , Galanin-Like Peptide/physiology , Humans , Receptor, Galanin, Type 2/chemistry , Receptor, Galanin, Type 2/metabolism , Receptors, GABA-A/chemistry , Receptors, Glutamate/chemistry , Receptors, Glutamate/metabolism , Receptors, Peptide/chemistry , Receptors, Peptide/metabolism
16.
J Biomol Screen ; 18(1): 97-107, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22923787

ABSTRACT

Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.


Subject(s)
Enzyme Activators/pharmacology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Allosteric Regulation , Animals , Calcium-Binding Proteins/physiology , Cells, Cultured , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/physiology , Rabbits , Rats , Rats, Sprague-Dawley , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/enzymology , Stimulation, Chemical
17.
Article in English | MEDLINE | ID: mdl-23233848

ABSTRACT

The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.

18.
Chem Biodivers ; 9(11): 2367-87, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23161624

ABSTRACT

The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with ß- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.


Subject(s)
Drug Discovery/methods , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Animals , Humans , Neuropeptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/chemistry , Signal Transduction/drug effects
19.
J Immunol ; 189(12): 5498-502, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23169588

ABSTRACT

Inflammation and its mediators, including cytokines and reactive oxygen species, are thought to contribute to neurodegeneration. In the mouse brain, we found that IL-13Rα1 was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta, which are preferentially lost in human Parkinson's disease. Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial LPS. IL-13, as well as IL-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse DA MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage, thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to Parkinson's disease, suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease.


Subject(s)
Dopaminergic Neurons/immunology , Dopaminergic Neurons/metabolism , Interleukin-13 Receptor alpha1 Subunit/biosynthesis , Lipopolysaccharides/toxicity , Oxidative Stress/immunology , Animals , Cell Death/genetics , Cell Death/immunology , Chronic Disease , Disease Models, Animal , Dopaminergic Neurons/pathology , Genetic Diseases, X-Linked/genetics , Genetic Predisposition to Disease/etiology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-13 Receptor alpha1 Subunit/deficiency , Interleukin-13 Receptor alpha1 Subunit/genetics , Lipopolysaccharides/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology
20.
Front Genet ; 3: 184, 2012.
Article in English | MEDLINE | ID: mdl-23097647

ABSTRACT

Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.

SELECTION OF CITATIONS
SEARCH DETAIL
...