Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38237909

ABSTRACT

MOTIVATION: Non-informative or diffuse prior distributions are widely employed in Bayesian data analysis to maintain objectivity. However, when meaningful prior information exists and can be identified, using an informative prior distribution to accurately reflect current knowledge may lead to superior outcomes and great efficiency. RESULTS: We propose MetaNorm, a Bayesian algorithm for normalizing NanoString nCounter gene expression data. MetaNorm is based on RCRnorm, a powerful method designed under an integrated series of hierarchical models that allow various sources of error to be explained by different types of probes in the nCounter system. However, a lack of accurate prior information, weak computational efficiency, and instability of estimates that sometimes occur weakens the approach despite its impressive performance. MetaNorm employs priors carefully constructed from a rigorous meta-analysis to leverage information from large public data. Combined with additional algorithmic enhancements, MetaNorm improves RCRnorm by yielding more stable estimation of normalized values, better convergence diagnostics and superior computational efficiency. AVAILABILITY AND IMPLEMENTATION: R Code for replicating the meta-analysis and the normalization function can be found at github.com/jbarth216/MetaNorm.


Subject(s)
Algorithms , Data Analysis , Bayes Theorem
2.
Stat Med ; 42(11): 1699-1721, 2023 05 20.
Article in English | MEDLINE | ID: mdl-36869639

ABSTRACT

Rare binary events data arise frequently in medical research. Due to lack of statistical power in individual studies involving such data, meta-analysis has become an increasingly important tool for combining results from multiple independent studies. However, traditional meta-analysis methods often report severely biased estimates in such rare-event settings. Moreover, many rely on models assuming a pre-specified direction for variability between control and treatment groups for mathematical convenience, which may be violated in practice. Based on a flexible random-effects model that removes the assumption about the direction, we propose new Bayesian procedures for estimating and testing the overall treatment effect and inter-study heterogeneity. Our Markov chain Monte Carlo algorithm employs Pólya-Gamma augmentation so that all conditionals are known distributions, greatly facilitating computational efficiency. Our simulation shows that the proposed approach generally reports less biased and more stable estimates compared to existing methods. We further illustrate our approach using two real examples, one using rosiglitazone data from 56 studies and the other using stomach ulcers data from 41 studies.


Subject(s)
Algorithms , Models, Statistical , Humans , Bayes Theorem , Computer Simulation , Monte Carlo Method , Markov Chains
SELECTION OF CITATIONS
SEARCH DETAIL
...