Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36014161

ABSTRACT

The assembly of passive components on flexible electronics is essential for the functionalization of circuits. For this purpose, adhesive bonding technology by isotropic conductive adhesive (ICA) is increasingly used in addition to soldering processes. Nevertheless, a comparative study, especially for bending characterization, is not available. In this paper, soldering and conductive adhesive bonding of 0603 and 0402 components on flexible polyimide substrates is compared using the design of experiments methods (DoE), considering failure for shear strength and bending behavior. Various solder pastes and conductive adhesives are used. Process variation also includes curing and soldering profiles, respectively, amount of adhesive, and final surface metallization. Samples created with conductive adhesive H20E, a large amount of adhesive, and a faster curing profile could achieve the highest shear strength. In the bending characterization using adhesive bonding, samples on immersion silver surface finish withstood more cycles to failure than samples on bare copper surface. In comparison, the samples soldered to bare copper surface finish withstood more cycles to failure than the soldered samples on immersion silver surface finish.

2.
ChemMedChem ; 17(9): e202100757, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35072346

ABSTRACT

A series of hexafluoroisopropyl carbamates with indolylalkyl- and azaindolylalkyl-substituents at the carbamate nitrogen was synthesized and evaluated for inhibition of the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The synthesized derivatives with butyl to heptyl spacers between the heteroaryl and the carbamate moiety were inhibitors of both enzymes. For investigated compounds in which the alkyl chain was partially incorporated into a piperidine ring, different results were obtained. Compounds with a methylene spacer between the piperidine ring and the heteroaromatic system were found to be selective MAGL inhibitors, while an extension of the alkyl spacer to two to four atoms resulted in dual inhibition of FAAH/MAGL. The only small change in enzyme inhibitory activity with variation of the heteroaromatic system indicates that the reactive hexafluoroisopropyl carbamate group is mainly responsible for the strength of the inhibitory effect of the compounds. Selected derivatives were also tested for hydrolytic stability in aqueous solution, liver homogenate and blood plasma as well as for aqueous solubility and for permeability in a Caco-2 cell model. Some compounds showed a slightly higher MAGL inhibitory effect than the known selective MAGL inhibitor ABX-1431 and also partly surpassed this substance with regard to certain physicochemical and biochemical properties such as water solubility and cell permeability.


Subject(s)
Carbamates , Monoacylglycerol Lipases , Amidohydrolases , Caco-2 Cells , Carbamates/chemistry , Carbamates/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Monoglycerides , Piperidines/chemistry
3.
ACS Omega ; 6(20): 13466-13483, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34056494

ABSTRACT

A series of aryl N-[ω-(6-fluoroindol-1-yl)alkyl]carbamates with alkyl spacers of varying lengths between the indole and the carbamate group and with differently substituted aryl moieties at the carbamate oxygen were synthesized and tested for inhibition of the pharmacologically interesting serine hydrolases fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE). Furthermore, the chemical stability in an aqueous solution and the metabolic stability toward esterases in porcine liver homogenate and porcine blood plasma were determined. While most of the synthesized derivatives were potent inhibitors of FAAH, a considerable inhibition of MAGL and BuChE was elicited only by compounds with a high carbamate reactivity, as evidenced by a significant hydrolysis of these compounds in an aqueous solution. However, the high inhibitory potency of some compounds toward MAGL and BuChE, especially that of the ortho-carboxyphenyl derivative 37, could not be explained by chemical reactivity alone. Several of the carbamates studied possessed varying degrees of stability toward esterases from liver and blood plasma. In some cases, marked inactivation by the pseudo-esterase activity of plasma albumin was observed. Mass spectrometric studies showed that such carbamates formed covalent bonds with albumin at several sites.

4.
Micromachines (Basel) ; 12(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451151

ABSTRACT

Flexible electronics is a rapidly growing technology for a multitude of applications. Wearables and flexible displays are some application examples. Various technologies and processes are used to produce flexible electronics. An important aspect to be considered when developing these systems is their reliability, especially with regard to repeated bending. In this paper, the frequently used methods for investigating the bending reliability of flexible electronics are presented. This is done to provide an overview of the types of tests that can be performed to investigate the bending reliability. Furthermore, it is shown which devices are developed and optimized to gain more knowledge about the behavior of flexible systems under bending. Both static and dynamic bending test methods are presented.

5.
J Med Chem ; 63(21): 13159-13186, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33089691

ABSTRACT

We herein report the conventional and microscale parallel synthesis of selective inhibitors of human blood coagulation factor XIIa and thrombin exhibiting a 1,2,4-triazol-5-amine scaffold. Structural variations of this scaffold allowed identifying derivative 21i, a potent 29 nM inhibitor of FXIIa, with improved selectivity over other tested serine proteases and also finding compound 21m with 27 nM inhibitory activity toward thrombin. For the first time, acylated 1,2,4-triazol-5-amines were proved to have anticoagulant properties and the ability to affect thrombin- and cancer-cell-induced platelet aggregation. Performed mass spectrometric analysis and molecular modeling allowed us to discover previously unknown interactions between the synthesized inhibitors and the active site of FXIIa, which uncovered the mechanistic details of FXIIa inhibition. Synthesized compounds represent a promising starting point for the development of novel antithrombotic drugs or chemical tools for studying the role of FXIIa and thrombin in physiological and pathological processes.


Subject(s)
Amines/chemistry , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Factor XIIa/metabolism , Thrombin/metabolism , Amines/chemical synthesis , Amines/metabolism , Anticoagulants/chemical synthesis , Anticoagulants/metabolism , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Factor XIIa/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Platelet Aggregation/drug effects , Structure-Activity Relationship , Thrombin/antagonists & inhibitors , Triazoles/chemistry
6.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629981

ABSTRACT

This paper presents a feasibility study of an automated pick-and-place process for ultrathin chips on a standard automatic assembly machine. So far, scientific research about automated assembly of ultrathin chips, with thicknesses less than 50 µm, is missing, but is necessary for cost-effective, high-quantity production of system-in-foil for applications in narrow spaces or flexible smart health systems applied in biomedical applications. Novel pick-and-place tools for ultrathin chip handling were fabricated and a process for chip detachment from thermal release foil was developed. On this basis, an adhesive bonding process for ultrathin chips with 30 µm thickness was developed and transferred to an automatic assembly machine. Multiple ultrathin chips aligned to each other were automatically placed and transferred onto glass and polyimide foil with a relative placement accuracy of ±25 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...