Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38912676

ABSTRACT

The microwave spectrum of 2,4-dimethylpyrrole was investigated using a Fourier-transform microwave spectrometer in a supersonic expansion. Torsional splittings arising from two inequivalent methyl internal rotors in combination with hyperfine splittings due to the nuclear quadrupole coupling of the 14N nucleus were observed. The experiments were accompanied by quantum chemical calculations. A total of 1561 rotational lines were assigned and fitted in global fits using the programs XIAM and BELGI-Cs-2Tops-hyperfine, both achieved the measurement accuracy of 4 kHz. Local separate fits were also performed to verify the correctness of the assignment. Accurate experimental molecular and internal rotation parameters could be deduced and compared to the calculated ones. The barrier to internal rotation of the 2-methyl rotor was determined to be 277.830(26) cm-1, essentially the same as the value of about 280 cm-1 found for 2-methylpyrrole but lower than the value of 317 cm-1 found for 2,5-dimethylpyrrole. The torsional barrier value of the 4-methyl rotor is 262.210(27) cm-1, slightly higher than the value of 246 cm-1 found for 3-methylpyrrole. Benchmarking the rotational constants for 2,4- and 2,5-dimethylpyrrole revealed that the MP2/6-31G(d,p) level could be helpful to guide the assignment of microwave spectra of pyrrole derivatives.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121505, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35797884

ABSTRACT

The microwave spectrum of 2-acetyl-4-methylthiophene (2A4MT) was recorded in the frequency range from 2 to 26.5 GHz using a molecular jet Fourier transform microwave spectrometer, revealing two conformers, syn and anti. Both methyl groups in the molecule, the acetyl methyl and the ring methyl groups, undergo internal rotation, causing resolvable splittings of all rotational transitions into quintets. The torsional barriers determined for the acetyl methyl and the ring methyl rotors are 324.919(94) cm-1 and 210.7181(61) cm-1 for the syn conformer; the respective values for anti-2A4MT are 281.201(17) cm-1 and 212.9797(41) cm-1. The experimentally deduced rotational constants and torsional barriers are compared to values obtained from quantum chemical calculations. The barriers to methyl internal rotation are also compared to those of related molecules in order to establish a "thiophene class" concerning the acetyl methyl torsion.

SELECTION OF CITATIONS
SEARCH DETAIL
...