Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 59(28): 4193-4196, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36942515

ABSTRACT

A series of (NHC)(cod)Ir(I) complexes bearing NHC-carboxylate ligands were efficiently synthesized and fully characterized. Their solid-state structures confirmed the bidentate coordination mode of these LX-type NHC ligands. These unprecedented iridium(I) complexes demonstrated efficient catalytic activities in dehydrogenative directed C-H silylation of arenes, and allowed for excellent ortho-selectivity control with aromatic silylating agents.

2.
Inorg Chem ; 62(5): 2376-2388, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36704899

ABSTRACT

The coordinating properties of two families of ylides, namely, phosphonium ylides and iminophosphoranes, differently substituted at the ylidic center (CH2- vs NiPr-), have been investigated in structurally related cationic phosphine-ylide Rh(CO)2 complexes obtained from readily available phosphine-phosphonium salt precursors derived from an ortho-phenylene bridge. However, while the Rh(CO)2 complex bearing the P+-CH2- donor moiety proved to be stable, the P═NiPr donor end appeared to induce lability to one of the CO groups. All of the RhI carbonyl complexes in both ylide series were fully characterized, including through X-ray diffraction analysis. Based on the experimental and calculated infrared (IR) CO stretching frequencies in Rh(CO)2 complexes, we evidenced that the phosphonium ylide ligand is a stronger donor than the iminophosphorane ligand. However, we also found that the difference in the intrinsic electronic properties can be largely compensated by the introduction of an iPr substituent on the N atom of the iminophosphorane, hence pointing to the noninnocent role of the peripheral substituent and opening novel possibilities to tune the properties of metal complexes containing ylide ligands.

3.
Elife ; 112022 05 10.
Article in English | MEDLINE | ID: mdl-35535493

ABSTRACT

Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.


Subject(s)
Antineoplastic Agents , Short Chain Dehydrogenase-Reductases , Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Stress , Humans , Lipids , Unfolded Protein Response
4.
Chemistry ; 28(17): e202200166, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35143078

ABSTRACT

The first chiral helicene-NHC gold(I) complexes efficient in enantioselective catalysis were prepared. The L-shaped chiral ligand is composed of an imidazo[1,5-a]pyridin-3-ylidene (IPy) scaffold laterally substituted by a configurationally stable [5]-helicenoid unit. The chiral information was introduced in a key post-functionalization step of a NHC-gold(I) complex bearing a symmetrical anionic fluoreno[5]helicene substituent, leading to a racemic mixture of complexes featuring three correlated elements of chirality, namely central, axial and helical chirality. After HPLC enantiomeric resolution, X-ray crystallography and theoretical calculations enabled structural and stereochemical characterization of these configurationally stable NHC-gold(I) complexes. The high potential in asymmetric catalysis is demonstrated in the benchmark cycloisomerization of N-tethered 1,6-enynes with up to 95 : 5 er.

5.
Inorg Chem ; 60(16): 12116-12128, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34333976

ABSTRACT

The reaction of readily available imidazolium-phosphonium salt [MesIm(CH2)3PPh3](OTf)2 with PdCl2 in the presence of an excess of Cs2CO3 afforded selectively in one step the cationic Pd(II) complex [(C,C,C)Pd(NCMe)](OTf) exhibiting an LX2-type NHC-ylide-aryl C,C,C-pincer ligand via formal triple C-H bond activation. The replacement of labile MeCN in the latter by CNtBu and CO fragments allowed to estimate the overall electronic properties of this phosphonium ylide core pincer scaffold incorporating three different carbon-based donor ends by IR spectroscopy, cyclic voltammetry, and molecular orbital analysis, revealing its significantly higher electron-rich character compared to the structurally close NHC core pincer system with two phosphonium ylide extremities. The pincer complex [(C,C,C)Pd(CO)](OTf) represents a rare example of Pd(II) carbonyl species stable at room temperature and characterized by X-ray diffraction analysis. The treatment of isostructural cationic complexes [(C,C,C)Pd(NCMe)](OTf) and [(C,C,C)Pd(CO)](OTf) with (allyl)MgBr and nBuLi led to the formation of zwitterionic phosphonium organopalladates [(C,C,C)PdBr] and [(C,C,C)Pd(COnBu)], respectively.

6.
Inorg Chem ; 59(10): 7082-7096, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32352287

ABSTRACT

The coordinating properties of N-heterocyclic carbene (NHC) (A), phenolate (B), and phosphonium ylide (C) moieties were investigated systematically through the preparation of a family of NHC, phosphonium ylide-based pincer ligands, where the third donor extremity can be either an NHC, a phenolate, or a phosphonium ylide. The overall donor character of such ligands [NHC(AaBbCc)] (a + b + c = 2) was analyzed by comparison of the molecular orbitals (energy and shape), oxidation potentials (Epox), and IR νCO and νCN stretching frequencies of their isostructural pincer Pd(II) complexes [NHC(AaBbCc)PdL][OTf] (L = NCCH3, CO, or CNtBu). The three categories of pincer complexes based on phosphonium ylides were easily obtained by acidic treatment of their highly stable ortho-metalated Pd(II) precursors prepared in a single step from readily available N-phosphonio-substituted imidazolium salts. Analysis of IR data indicated that NHC and phenolate ligands have a similar donor character but which remains lower than that of the phosphonium ylide. The impact on catalytic performance of the incorporation of a second strongly donating phosphonium ylide into the ligand architecture was illustrated in the Pd-catalyzed allylation of aldehydes.

7.
Chemistry ; 26(47): 10707-10711, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32277543

ABSTRACT

carbo-Benzene is an aromatic molecule devised by inserting C2 units within each C-C bond of the benzene molecule. By integrating the corresponding carbo-quinoid core as bridging unit in a π-extended tetrathiafulvalene (exTTF), it is shown that a carbo-benzene ring can be reversibly formed by electrochemical reduction or oxidation. The so-called carbo-exTTF molecule was thus experimentally prepared and studied by UV-visible absorption spectroscopy and cyclic voltammetry, as well as by X-ray crystallography and by scanning tunneling microscopy (STM) on a surface of highly oriented pyrolytic graphite (HOPG). The molecule and its oxidized and reduced forms were subjected to a computational study at the density functional theory (DFT) level, supporting carbo-aromaticity as a driving force for the formation of the dication, radical cation, and radical anion. By allowing co-planarity of the dithiolylidene rings and carbo-quinoidal core, carbo-exTTFs present a promising new class of redox-active systems.

8.
Chem Commun (Camb) ; 56(22): 3305-3308, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32073051

ABSTRACT

A cationic NHC 1+ bearing an N-bound 2,3-bis(diisopropylamino)cyclopropenium group is reported. From an easily available dicationic imidazolium precursor, the coordination abilities and stereo-electronic properties of 1+ are evaluated by the formation of Pd(ii), Rh(i) and Au(i) complexes. The cationic gold(i) complex is implemented in representative intramolecular Au(i)-catalyzed cyclizations.

9.
Chemistry ; 25(56): 13030-13036, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31385630

ABSTRACT

Coupling between 5-bromoimidazo[1,5-a]pyridinium salts and malonate or arylacetate esters leads to a facile and straightforward access to the new mesoionic, fused, tricyclic system of imidazo[2,1,5-cd]indolizinium-3-olate. Mechanistic studies show that the reaction pathway consists of nucleophilic aromatic substitution on the cationic, bicyclic heterocycle by an enolate-type moiety and in the nucleophilic attack of a transient free N-heterocyclic carbene (NHC) species on the ester group; the relative order of these two steps depends on the nature of the starting ester. This work highlights the valuable implementation of free NHC species as key intermediates in synthetic chemistry, beyond their classical use as stabilizing ligands or organocatalysts.

10.
Chem Sci ; 6(2): 1139-1149, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560201

ABSTRACT

Ideally Cs-/C2v-symmetric chromophores, constituted by two electro-active groups conjugated through the carbo-mer of the cyclohexa-1,3-diene core, are selectively prepared by the SnCl2-mediated reduction of tailored hexaoxy-[6]pericyclynes: in the latter substrates, one of the 1,4-dioxybut-2-yne edges is "chemically locked" by two CF3 substituents preventing complete reduction to the corresponding aromatic carbo-benzenic core, which is expected to be more "π-insulating" between the electro-active ends. The bis-trifluoromethylated carbo-cyclohexadiene products are also shown to be significantly stabilized with respect to their bis-phenylated analogues. Their structural (crystal X-ray diffraction analyses), spectroscopical (NMR and UV-vis spectra), physio-optical (dichromism in solution) and electrochemical (cyclic voltammograms) properties are compared on the basis of the electron-donating/electron-withdrawing nature of the substituents. These properties are also compared with those of their aromatic carbo-benzene and flexible carbo-n-butadiene counterparts.

11.
Dalton Trans ; 42(20): 7373-85, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23361332

ABSTRACT

The anionic malonate-derived N-heterocyclic carbenes (maloNHCs) react cleanly and rapidly with copper chloride to generate the anionic complexes of type [(maloNHC)CuCl]·Li, which crystallize in the solid state either in an oligomeric trimer arrangement or in polymeric helixes depending on the substitution pattern and the solvent. Ten zwitterionic heteroleptic Cu(I) complexes combining the anionic maloNHC and a neutral imidazol-2-ylidene are also obtained in a very selective manner and fully characterized. Whereas the anionic complexes are relatively active catalysts for the hydrosilylation of carbonyl compounds, the zwitterionic complexes reveal to be efficient and extremely robust pre-catalysts for the intramolecular cyclopropanation reaction of a diazo ester and outperform the corresponding cationic Cu(i) complexes with classical imidazol-2-ylidenes.

12.
Inorg Chem ; 52(1): 48-58, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23259509

ABSTRACT

The coordination chemistry of a potentially pincer-type dicationic meta-phenylene-bis(imidazoliophosphine) ligand 3 to neutral and cationic carbonylrhodium(I) centers has been investigated. Similarly to what was observed previously for its ortho-phenylene counterpart, 3 was found to bind to the RhCl(CO) fragment in a trans-chelating manner that makes possible a weak Rh-C(H) interaction, inferred from the nonbonding but relatively short Rh-C and Rh-H contacts observed in the solid state structure of the dicationic adduct (3)RhCl(CO) (5). Formation of the target PCP-type pincer complex could not be triggered despite multiple attempts to deprotonate the central C-H moiety in the initial dicationic adduct 5, or in the tricationic species [(3)Rh(CO)](+) (8) generated by abstraction of the chloride ion from 5. Complex 8 was identified on the basis of NMR and IR analyses as a Rh(I)-stabilized P(CH)P-intermediate en route to the anticipated classical PCP-type pincer complex. Analysis of the electronic structure of this intermediate computed at the density functional level of theory (DFT level) revealed a bonding overlap between a Rh d-orbital and π-orbitals of the m-phenylene ring. NBO analyses and calculated Wiberg indices confirm that this interaction comprises an η(1)-C-Rh bonding mode, with only secondary contributions from the geminal C and H atoms. Although the target PCP-type pincer complex could not be generated, treatment of the tricationic intermediate with methanol induced a P-CN(2) bond cleavage at both imidazoliophosphine moieties, resulting in the formation of a dicationic "open pincer" species, that is, a nonchelated bis((MeO)PPh(2))-stabilized aryl-Rhodium complex that is the κC-only analogue of the putative κP,κC,κP-PCP complex sought initially. Theoretical studies at the DFT level of experimental or putative species relevant to the final C-H activation process ruled out the oxidative addition pathway. Two alternative pathways are proposed to explain the formation of the "open pincer" complex, one based on an organometallic α-elimination step, the other based on an organic aromatization-driven ß-elimination process.


Subject(s)
Electrons , Imidazoles/chemistry , Organometallic Compounds/chemistry , Phosphines/chemistry , Rhodium/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Quantum Theory
13.
Chemistry ; 17(18): 5086-100, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21432917

ABSTRACT

The π-electron-rich C(8)-conjugated sequence of 1,4-dialkynylbutatrienes is identified as a fragile and fascinating motif occurring in carbo-benzene derivatives, and in Diederich's 1,4-bis(arylethynyl)- or 1,4-bis(triisopropylsilylethynyl)butatriene "capped" representatives, in particular, in tetraalkynylbutatriene. The family of symmetrical 1,4-dialkynylbutatrienes (E-C≡C)RC=C=C=CR(C≡C-E) is extended to functional caps (E=H, CH(3), C≡CPh, CPh=CHBr, or CPh=CBr(2)) with non-alkynyl substituents at the sp(2) vertices (R=Ph or CF(3)). The targets were selected for their potential in appealing retrosynthetic routes to carbo-benzenes, in which the aromatic C(18) macrocycle would be directly generated by sequential metathesis or reductive coupling processes. The functional 1,4-dialkynylbutrienes were synthesized by either classical methods used for the preparation of generic butatrienes (R'Li/CuX-mediated reductive coupling of gem-dihaloenynes or SnCl(2)/HCl-mediated reduction of 3,6-dioxy-octa-1,4,7-triyne precursors). Their spectroscopic and electrochemical properties are compared and analyzed on the basis of the relative extent of total conjugation.

SELECTION OF CITATIONS
SEARCH DETAIL
...