Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 18(12): 2236-50, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23118416

ABSTRACT

Cordycepin (3' deoxyadenosine) has long been used in the study of in vitro assembled polyadenylation complexes, because it terminates the poly(A) tail and arrests the cleavage complex. It is derived from caterpillar fungi, which are highly prized in Chinese traditional medicine. Here we show that cordycepin specifically inhibits the induction of inflammatory mRNAs by cytokines in human airway smooth muscle cells without affecting the expression of control mRNAs. Cordycepin treatment results in shorter poly(A) tails, and a reduction in the efficiency of mRNA cleavage and transcription termination is observed, indicating that the effects of cordycepin on 3' processing in cells are similar to those described in in vitro reactions. For the CCL2 and CXCL1 mRNAs, the effects of cordycepin are post-transcriptional, with the mRNA disappearing during or immediately after nuclear export. In contrast, although the recruitment of RNA polymerase II to the IL8 promoter is also unaffected, the levels of nascent transcript are reduced, indicating a defect in transcription elongation. We show that a reporter construct with 3' sequences from a histone gene is unaffected by cordycepin, while CXCL1 sequences confer cordycepin sensitivity to the reporter, demonstrating that polyadenylation is indeed required for the effect of cordycepin on gene expression. In addition, treatment with another polyadenyation inhibitor and knockdown of poly(A) polymerase α also specifically reduced the induction of inflammatory mRNAs. These data demonstrate that there are differences in the 3' processing of inflammatory and housekeeping genes and identify polyadenylation as a novel target for anti-inflammatory drugs.


Subject(s)
Deoxyadenosines/pharmacology , Gene Expression/drug effects , Inflammation/genetics , Inflammation/prevention & control , Polyadenylation/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Chemokine CCL2/genetics , Chemokine CXCL1/genetics , DNA-Directed RNA Polymerases/metabolism , HeLa Cells , Humans , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Interleukin-8/genetics , Mice , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , NIH 3T3 Cells , Promoter Regions, Genetic , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory Muscles/drug effects , Respiratory Muscles/metabolism , Tumor Necrosis Factor-alpha/pharmacology
2.
J Biol Chem ; 285(4): 2610-21, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-19940154

ABSTRACT

3'-Deoxyadenosine, also known as cordycepin, is a known polyadenylation inhibitor with a large spectrum of biological activities, including anti-proliferative, pro-apoptotic and anti-inflammatory effects. In this study we confirm that cordycepin reduces the length of poly(A) tails, with some mRNAs being much more sensitive than others. The low doses of cordycepin that cause poly(A) changes also reduce the proliferation of NIH3T3 fibroblasts. At higher doses of the drug we observed inhibition of cell attachment and a reduction of focal adhesions. Furthermore, we observed a strong inhibition of total protein synthesis that correlates with an inhibition of mammalian target of rapamycin (mTOR) signaling, as observed by reductions in Akt kinase and 4E-binding protein (4EBP) phosphorylation. In 4EBP knock-out cells, the effect of cordycepin on translation is strongly reduced, confirming the role of this modification. In addition, the AMP-activated kinase (AMPK) was shown to be activated. Inhibition of AMPK prevented translation repression by cordycepin and abolished 4EBP1 dephosphorylation, indicating that the effect of cordycepin on mTOR signaling and protein synthesis is mediated by AMPK activation. We conclude that many of the reported biological effects of cordycepin are likely to be due to its effects on mTOR and AMPK signaling.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Adhesion/drug effects , Deoxyadenosines/pharmacology , Protein Synthesis Inhibitors/pharmacology , Signal Transduction/drug effects , Actin Cytoskeleton/drug effects , Adenylate Kinase/metabolism , Animals , Cell Division/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mice , NIH 3T3 Cells , Polyadenylation/drug effects , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/drug effects , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...