Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 52(6): 1000-9, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9396780

ABSTRACT

The effects of the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 and the PKC inhibitors staurosporine and UCN-01 were examined with respect to modulation of 1-[beta-D-arabinofuranosyl]cytosine (ara-C)-induced apoptosis in human myeloid leukemia cells (HL-60) overexpressing the antiapoptotic protein Bcl-2. HL-60/Bcl-2 cells displayed a 5-fold increase in Bcl-2 protein compared with empty-vector counter-parts (HL-60/pCEP4) but comparable levels of Bax, Mcl-1, and Bcl-xL. After exposure to an equimolar concentration of ara-C (10 microM for 6 hr), HL-60/Bcl-2 cells were significantly less susceptible to apoptosis, DNA fragmentation, and loss of clonogenicity than HL-60/pCEP4 cells. The protective effect of increased Bcl-2 expression was manifested by a failure of ara-C to induce activation/cleavage of the Yama protease (CPP32; caspase-3) and degradation of one of its substrates, poly(ADP-ribose)polymerase to an 85-kDa cleavage product. When HL-60/Bcl-2 cells were preincubated with bryostatin 1 (10 nM; 24 hr) or coincubated with either staurosporine (50 nM; 6 hr) or UCN-01 (300 nM; 6 hr) after a 1-hr preincubation, exposures that exerted minimal effects alone, ara-C-induced apoptosis and DNA fragmentation were restored to levels equivalent to, or greater than, those observed in empty-vector controls. These events were accompanied by restoration of the ability of ara-C to induce CPP32 cleavage and activation, poly(ADP-ribose) polymerase degradation, and inhibition of colony formation. Western analysis of Bcl-2 protein obtained from overexpressing cells treated with bryostatin 1, staurosporine, or UCN-01 revealed the appearance of a slowly migrating species and a general broadening of the protein band, effects that were insensitive to the protein synthesis inhibitor cycloheximide. Alterations in Bcl-2 protein mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were reversed by treatment of lysates with alkaline phosphatase or protein phosphatase 2A; actions of the latter were blocked by the specific phosphatase inhibitor okadaic acid. In vivo labeling studies of Bcl-2 protein demonstrated increased incorporation of [32PO4]orthophosphate in drug-treated cells. Last, phosphorylated Bcl-2 failed to display decreased binding to the proapoptotic protein Bax. Collectively, these findings indicate that bryostatin 1, which down-regulates PKC, and staurosporine and UCN-01, which directly inhibit the enzyme, circumvent resistance of Bcl-2-overexpressing leukemic cells to ara-C-induced apoptosis and activation of the protease cascade. They also raise the possibility that modulation of Bcl-2 phosphorylation status contributes to this effect.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Cytarabine/pharmacology , HL-60 Cells/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Blotting, Western , Bryostatins , DNA, Neoplasm/drug effects , DNA, Neoplasm/metabolism , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Drug Synergism , Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , HL-60 Cells/drug effects , Humans , Lactones/pharmacology , Macrolides , Phosphorylation , Protein Kinase C/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Staurosporine/pharmacology
2.
Cell Death Differ ; 4(4): 294-303, 1997 May.
Article in English | MEDLINE | ID: mdl-16465244

ABSTRACT

We have previously reported that pretreatment of HL-60 human promyelocytic leukemia cells with the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 potentiates induction of apoptosis by the antimetabolite 1-[beta-D-arabinofuranosyl]cytosine (ara-C) (Biochem Pharmacol 47:839,1994). To determine whether this phenomenon results from altered expression of Bcl-2 or related proteins, Northern and Western analysis was employed to assess the effects of bryostatin 1 and other PKC activators on steady-state levels of Bcl-2, Bax, Bcl-x, and Mcl-1 mRNA and protein. Pretreatment of cells for 24 h with 10 nM bryostatin 1, or, to a lesser extent, the stage-1 tumor-promoter phorbol dibutyrate (PDB) significantly potentiated apoptosis induced by ara-C (100 microM; 6 h); in contrast, equivalent exposure to the stage-2 tumor promoter, mezerein (MZN), which, unlike bryostatin 1, is a potent inducer of differentiation in this cell line, failed to modify ara-C-related cell death. Neither bryostatin 1 nor PDB altered expression of bcl-2/Bcl-2 over this time frame. In contrast, MZN down-regulated bcl-2 mRNA levels, but this effect was not accompanied by altered expression of Bcl-2 protein. None of the PKC activators modified expression of Bax or Bcl-x(L) mRNA or protein; levels of Bcl-x(S) were undetectable in both treated and untreated cells. However, expression of Mcl-1 mRNA and protein increased modestly after treatment with either bryostatin 1 or PDB, and to a greater extent following exposure to MZN. Combined treatment of cells with bryostatin 1 and MZN resulted in undiminished potentiation of ara-C-mediated apoptosis and by antagonism of cellular maturation. These effects were accompanied by unaltered expression of Bcl-2, Bax, and Bcl-x(L), and by a further increase in Mcl-1 protein levels. When cells were co-incubated with bryostatin 1 and calcium ionophore (A23187), an identical pattern of expression of Bcl-2 family members was observed, despite the loss of bryostatin 1's capacity to potentiate apoptosis, and the restoration of its ability to induce differentiation. Finally, treatment of cells with bryostatin 1+/-ara-C (but not ara-C alone) resulted in a diffuse broadening of the Bcl-2 protein band, whereas exposure of cells to taxol (250 nM, 6 h) led to the appearance of a distinct Bcl-2 species with reduced mobility, phenomena compatible with protein phosphorylation. Together, these findings indicate that the ability of bryostatin 1 to facilitate drug-induced apoptosis in human myeloid leukemia cells involves factors other than quantitative changes in the expression of Bcl-2 family members, and raise the possibility that qualitative alterations in the Bcl-2 protein, such as phosphorylation status, may contribute to this capacity. They also suggest that increased expression of Mcl-1 occurs early in the pre-commitment stage of myeloid cell differentiation, and that this event does not protect cells from drug-induced apoptosis.

3.
Oncol Res ; 6(2): 87-99, 1994.
Article in English | MEDLINE | ID: mdl-7949469

ABSTRACT

We have examined the effects of both nonspecific and highly selective pharmacological inhibitors of protein kinase C (PKC) on the capacity of a 6-h exposure to 1-[beta-D-arabinofuranosyl]cytosine (ara-C; 10 microM) to induce apoptotic DNA fragmentation and cell death in the human myeloid leukemia cell lines HL-60 and U937. Staurosporine, a highly potent, nonspecific inhibitor of PKC (20-50 nM), uniquely potentiated ara-C-related degradation of DNA to oligonucleosomal fragments in both cell lines (i.e., 2- to 3-fold), but was ineffective when given alone at these concentrations. In contrast, co-administration of the nonspecific PKC inhibitor H7 and two highly selective PKC inhibitors, calphostin C and chelerythrine, also increased the extent of DNA fragmentation observed in ara-C-treated cells, but these effects were evident only at inhibitor concentrations that were by themselves sufficient to induce DNA damage. Agarose gel electrophoresis demonstrated that cells co-exposed to staurosporine and ara-C exhibited considerably more pronounced internucleosomal DNA cleavage than did cells exposed to ara-C alone; moreover, this effect was suppressed by Zn2+ (1 mM) and the permeant Ca2+ chelator BAPTA-AM (50 microM). Potentiation of ara-C-related DNA fragmentation by subeffective concentrations of staurosporine was accompanied by a pronounced increase in the morphological features characteristic of apoptosis. A synergistic interaction between staurosporine and ara-C with respect to inhibition of clonogenicity in both HL-60 and U937 cells was demonstrated by median dose-effect analysis. The actions of staurosporine did not result from enhanced ara-C metabolism, as preincubation of cells with concentrations of this agent that potentiated ara-C actions (e.g., 20-50 nM) did not increase intracellular levels of the lethal metabolite ara-CTP. Lastly, preexposure of HL-60 and U937 cells to staurosporine did not block ara-C-mediated upregulation of c-jun, an oncogene whose increased expression has been temporally associated with ara-C-induced apoptosis. Together, these findings indicate that staurosporine exhibits a unique pattern of potentiation of ara-C-related apoptosis in human myeloid leukemias, and provide a rationale for exploring the antileukemic potential of this combination regimen.


Subject(s)
Alkaloids/pharmacology , Apoptosis/drug effects , Cytarabine/pharmacology , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Protein Kinase C/antagonists & inhibitors , Arabinofuranosylcytosine Triphosphate/metabolism , DNA Damage , Drug Synergism , Gene Expression/drug effects , Genes, jun/drug effects , Humans , Staurosporine , Tumor Cells, Cultured/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...