Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Proc Natl Acad Sci U S A ; 121(1): e2303423120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38150501

ABSTRACT

The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.

2.
Rev Sci Instrum ; 94(1): 013906, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725613

ABSTRACT

We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes.

4.
Phys Rev Lett ; 126(20): 207201, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34110224

ABSTRACT

We present a combined experimental and theoretical study of the mineral atacamite Cu_{2}Cl(OH)_{3}. Density-functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Magnetic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe a plateaulike magnetization at about M_{sat}/2. Based on complementary theoretical approaches, we show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead, we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D network of weakly coupled sawtooth chains that form giant moments.

5.
Phys Rev Lett ; 125(9): 097005, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32915617

ABSTRACT

We report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La_{2-x}Ba_{x}CuO_{4} with x=0.115. An extremely low uniaxial stress of ∼0.1 GPa induces a substantial decrease in the magnetic volume fraction and a dramatic rise in the onset of 3D superconductivity, from ∼10 to 32 K; however, the onset of at-least-2D superconductivity is much less sensitive to stress. These results show not only that large-volume-fraction spin-stripe order is anticorrelated with 3D superconducting coherence but also that these states are energetically very finely balanced. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. These results strongly suggest a similar pairing mechanism for spin-stripe order and the spatially modulated 2D and uniform 3D superconducting orders, imposing an important constraint on theoretical models.

6.
Phys Rev Lett ; 123(9): 097201, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31524473

ABSTRACT

Quantum materials that feature magnetic long-range order often reveal complex phase diagrams when localized electrons become mobile. In many materials magnetism is rapidly suppressed as electronic charges dissolve into the conduction band. In materials where magnetism persists, it is unclear how the magnetic properties are affected. Here we study the evolution of the magnetic structure in Nd_{1-x}Ce_{x}CoIn_{5} from the localized to the highly itinerant limit. We observe two magnetic ground states inside a heavy-fermion phase that are detached from unconventional superconductivity. The presence of two different magnetic phases provides evidence that increasing charge delocalization affects the magnetic interactions via anisotropic band hybridization.

7.
Commun Phys ; 2(1)2019.
Article in English | MEDLINE | ID: mdl-38915317

ABSTRACT

Topological defects are found ubiquitously in various kinds of matter, such as vortices in type-II superconductors, and magnetic skyrmions in chiral ferromagnets. While knowledge on the static behavior of magnetic skyrmions is accumulating steadily, their dynamics under forced flow is still a widely open issue. Here, we report the deformation of the moving magnetic skyrmion lattice in MnSi under electric current flow observed using small-angle neutron scattering. A spatially inhomogeneous rotation of the skyrmion lattice, with an inverse rotation sense for opposite sample edges, is observed for current densities greater than a threshold value j t ~ 1 MA m-2 (106 A m-2). Our result show that skyrmion lattices under current flow experience significant friction near the sample edges due to pinning, this being a critical effect that must be considered for anticipated skyrmion-based applications at the nanoscale.

8.
Phys Rev Lett ; 121(6): 067202, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141658

ABSTRACT

Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.

9.
Sci Rep ; 8(1): 10466, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29992965

ABSTRACT

Magnetic skyrmions are topologically protected spin-whirls currently considered as promising for use in ultra-dense memory devices. Towards achieving this goal, exploration of the skyrmion phase response and under external stimuli is urgently required. Here we show experimentally, and explain theoretically, that in the magnetoelectric insulator Cu2OSeO3 the skyrmion phase can expand and shrink significantly depending on the polarity of a moderate applied electric field (few V/µm). The theory we develop incorporates fluctuations around the mean-field that clarifies precisely how the electric field provides direct control over the free energy difference between the skyrmion and the surrounding conical phase. The quantitative agreement between theory and experiment provides a solid foundation for the development of skyrmionic applications based on magnetoelectric coupling.

10.
Sci Rep ; 8(1): 1295, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358702

ABSTRACT

Nd0.05Ce0.95CoIn5 features a magnetic field-driven quantum phase transition that separates two antiferromagnetic phases with an identical magnetic structure inside the superconducting condensate. Using neutron diffraction we demonstrate that the population of the two magnetic domains in the two phases is affected differently by the rotation of the magnetic field in the tetragonal basal plane. In the low-field SDW-phase the domain population is only weakly affected while in the high-field Q-phase they undergo a sharp switch for fields around the a-axis. Our results provide evidence that the anisotropic spin susceptibility in both phases arises ultimately from spin-orbit interactions but are qualitatively different in the two phases. This provides evidence that the electronic structure is changed at the quantum phase transition, which yields a modified coupling between magnetism and superconductivity in the Q-phase.

11.
Phys Rev Lett ; 115(6): 067001, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296127

ABSTRACT

We report structural evidence of dynamic reorganization in vortex matter in clean NbSe(2) by joint small-angle neutron scattering and ac susceptibility measurements. The application of oscillatory forces in a transitional region near the order-disorder transition results in robust bulk vortex lattice configurations with an intermediate degree of disorder. These dynamically originated configurations correlate with intermediate pinning responses previously observed, resolving a long-standing debate regarding the origin of such responses.

12.
Phys Rev Lett ; 113(10): 107203, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25238382

ABSTRACT

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortexlike objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of ∼25°. Supporting calculations show that an E-field-induced Skyrmion distortion lies behind the lattice rotation. Overall, we present a new approach to Skyrmion control that makes no use of spin-transfer torques due to currents of either electrons or magnons.

13.
J Phys Condens Matter ; 26(39): 396002, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25204667

ABSTRACT

La0.7Sr0.3Mn(3+)0.85Sb(5+)0.15O3 and La0.7Sr0.3Mn(3+)0.8Sb(5+)0.1Ge(4+)0.1O3 compounds with dominantly isovalent Mn3+ ions were studied by neutron powder diffraction and magnetization measurements. The compounds are basically ferromagnetic, with magnetic moments slightly above of 3 µB/Mn. Upon temperature decrease, the compounds exhibit structural transition from a rhombohedral phase to orbitally disordered orthorhombic one. The structural transitions occur well above the temperature of magnetic ordering (Tc ≈ 130 K). It is suggested that the ferromagnetic state is governed by the positive part of superexchange interactions Mn(3+)‒O‒Mn(3+), which is enhanced by Mn(eg)‒O(2p) hybridization.

14.
Rev Sci Instrum ; 85(2): 026112, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593412

ABSTRACT

We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

15.
Article in English | MEDLINE | ID: mdl-24032841

ABSTRACT

We report a study of the effects of pressure on the diffusivity of water molecules confined in single-wall carbon nanotubes (SWNT) with average mean pore diameter of ~16 Å. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220≤T≤260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from ~1.92 kbar at temperature T=260 K to ~1.85 kbar at T=220 K. Analysis of the observed dynamic structure factor S(Q,E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of "caged" or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.

16.
Phys Rev Lett ; 110(12): 127207, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166842

ABSTRACT

From magnetic, specific heat, (170)Yb Mössbauer effect, neutron diffraction, and muon spin relaxation measurements on polycrystalline Yb(2)Sn(2)O(7), we show that below the first order transition at 0.15 K all of the Yb(3+) ions are long-range magnetically ordered and each has a moment of 1.1 µ(B) which lies at ≃ 10° to a common fourfold cubic axis. The four sublattice moments have four different directions away from this axis and are therefore noncoplanar. We term this arrangement splayed ferromagnetism. This ground state has a dynamical component with a fluctuation rate in the megahertz range. The net ferromagnetic exchange interaction has an anisotropy that favors the local threefold axis. We discuss our results in terms of the phase diagram proposed by Savary and Balents [Phys. Rev. Lett. 108, 037202 (2012)] for a pyrochlore lattice of Kramers 1/2 effective spins.

17.
Phys Rev Lett ; 110(20): 205502, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167425

ABSTRACT

The properties of amorphous solids below 1 K are dominated by atomic tunneling systems. A basic description is given by the standard tunneling model. Despite its success, the standard tunneling model still remains phenomenological and little is known about the microscopic nature of tunneling systems in amorphous solids. We present dielectric polarization echo experiments on partially deuterated amorphous glycerol. Nuclear quadrupoles, introduced by the deuteration, influence the echo amplitude in a characteristic way and allow us to draw for the first time detailed conclusions about the microscopic nature of the tunneling processes in amorphous glycerol.

18.
J Phys Condens Matter ; 24(43): 432201, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23032155

ABSTRACT

Small-angle neutron scattering has been employed to study the influence of applied electric (E-)fields on the skyrmion lattice in the chiral lattice magnetoelectric Cu(2)OSeO(3). Using an experimental geometry with the E-field parallel to the [111] axis, and the magnetic field parallel to the [11(-)0] axis, we demonstrate that the effect of applying an E-field is to controllably rotate the skyrmion lattice around the magnetic field axis. Our results are an important first demonstration for a microscopic coupling between applied E-fields and the skyrmions in an insulator, and show that the general emergent properties of skyrmions may be tailored according to the properties of the host system.

19.
Phys Rev Lett ; 105(24): 247002, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21231554

ABSTRACT

We report on semiclassical angle-dependent magnetoresistance oscillations and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd(2-x)CexCuO4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime.

20.
Phys Rev Lett ; 103(15): 157002, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905660

ABSTRACT

We report on the direct probing of the Fermi surface in the bulk of the electron-doped superconductor Nd(2-x)Ce(x)CuO(4) at different doping levels by means of magnetoresistance quantum oscillations. Our data reveal a sharp qualitative change in the Fermi surface topology, due to translational symmetry breaking in the electronic system which occurs at a critical doping level significantly exceeding the optimal doping. This result implies that the (pi/a, pi/a) ordering, known to exist at low doping levels, survives up to the overdoped superconducting regime.

SELECTION OF CITATIONS
SEARCH DETAIL
...