Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 121(6): 605-615, 2018 12.
Article in English | MEDLINE | ID: mdl-29491467

ABSTRACT

By reducing genetically effective population size and gene flow, self-fertilization should lead to strong spatial genetic structure (SGS). Although the short-lived plant Aquilegia canadensis produces large, complex, nectar-rich flowers, 75% of seed, on average, are self-fertilized. Previous experimental results are consistent with the fine-scale SGS expected in selfing populations. In contrast, key floral traits show no evidence of SGS, despite a significant genetic basis to phenotypic variation within populations. In this study, we attempt to resolve these contradictory results by hierarchically sampling plants from two plots nested within each of seven rock outcrops distributed over several km, and comparing the spatial pattern of phenotypic variation in four floral traits with neutral genetic variation at 10 microsatellite loci. For both floral and microsatellite variation, we detected only weak hierarchical structuring and no isolation by distance. The spatial pattern of variation in floral traits was on par with microsatellite polymorphisms. These results suggest regular long-distance gene flow via pollen. At much finer spatial scales within plots, estimates of relatedness were higher (albeit very low) between nearest neighbors than random plants, and declined with increasing distance between neighbors, which is consistent with highly localized seed dispersal. High selfing should yield SGS, but strong inbreeding depression in A. canadensis likely erodes SGS so that reproductive plants exhibit weak structure typical of outcrossers, especially given that outcrossing and consequent gene flow in this species are mediated by strong-flying hummingbirds and bumble bees.


Subject(s)
Fertilization , Genes, Plant , Genetic Variation , Ranunculaceae/genetics , Ranunculaceae/physiology , Flowers
2.
J Evol Biol ; 28(11): 2097-105, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26310698

ABSTRACT

Stronger pollen limitation should increase competition among plants, leading to stronger selection on traits important for pollen receipt. The few explicit tests of this hypothesis, however, have provided conflicting support. Using the arithmetic relationship between these two quantities, we show that increased pollen limitation will automatically result in stronger selection (all else equal) although other factors can alter selection independently of pollen limitation. We then tested the hypothesis using two approaches. First, we analysed the published studies containing information on both pollen limitation and selection. Second, we explored how natural selection measured in one Ontario population of Lobelia cardinalis over 3 years and two Michigan populations in 1 year relates to pollen limitation. For the Ontario population, we also explored whether pollinator-mediated selection is related to pollen limitation. Consistent with the hypothesis, we found an overall positive relationship between selection strength and pollen limitation both among species and within L. cardinalis. Unexpectedly, this relationship was found even for vegetative traits among species, and was not found in L. cardinalis for pollinator-mediated selection on nearly all trait types.


Subject(s)
Lobelia/genetics , Lobelia/physiology , Pollen/physiology , Seeds/physiology , Selection, Genetic , Demography , Flowers/anatomy & histology , Flowers/physiology , Michigan , Ontario
SELECTION OF CITATIONS
SEARCH DETAIL
...