Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 07 03.
Article in English | MEDLINE | ID: mdl-32618271

ABSTRACT

N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.


A microscopic parasite known as Toxoplasma gondii infects around 30% of the human population. Most infections remain asymptomatic, but in people with a compromised immune system, developing fetuses and people infected with particular virulent strains of the parasite, infection can be fatal. T. gondii is closely related to other parasites that also infect humans, including the one that causes malaria. These parasites have complex lifecycles that involve successive rounds of invading the cells of their hosts, growing and then exiting these cells. Signaling proteins found at specific locations within parasite cells regulate the ability of the parasites to interact with and invade host cells. Sometimes these signaling proteins are attached to membranes using lipid anchors, for example through a molecule called myristic acid. An enzyme called NMT can attach myristic acid to one end of its target proteins. The myristic acid tag can influence the ability of target proteins to bind to other proteins, or to membranes. Previous studies have found that drugs that inhibit the NMT enzyme prevent the malaria parasite from successfully invading and growing inside host cells. The NMT enzyme from T. gondii is very similar to that of the malaria parasite. Broncel et al. have shown that the drug developed against P. falciparum also inhibits the ability of T. gondii to grow. These findings suggest that drugs against the NMT enzyme may be useful to treat diseases caused by T. gondii and other closely-related parasites. Broncel et al. also identified 65 proteins in T. gondii that contain a myristic acid tag using an approach called proteomics. One of the unexpected 'myristoylated' proteins identified in the experiments is known as MIC7. This protein was found to be transported onto the surface of T. gondii parasites and is required in its myristoylated form for the parasite to successfully invade host cells. This was surprising as myristoylated proteins are generally thought to not enter the pathway that brings proteins to the outside of cell. These findings suggest that myristic acid on proteins that are secreted can facilitate interactions between cells, maybe by inserting the myristic acid into the cell membrane.


Subject(s)
Calcium-Binding Proteins/metabolism , Fibroblasts/parasitology , Membrane Proteins/metabolism , Myristic Acids/chemistry , Protozoan Proteins/metabolism , Toxoplasma/genetics , Toxoplasma/physiology , Acyltransferases/physiology , Animals , Animals, Genetically Modified , Calcium-Binding Proteins/genetics , Cell Line , Cell Line, Tumor , Cell Membrane/physiology , Humans , Membrane Proteins/genetics , Microscopy, Video , Protein Domains , Proteomics , Protozoan Proteins/genetics
2.
Biochem J ; 473(13): 1869-79, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27099339

ABSTRACT

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Riboflavin/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Humans , Mice , Phosphoric Diester Hydrolases/chemistry , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Riboflavin/analogs & derivatives , Riboflavin/pharmacology , Temperature
3.
Nucleic Acids Res ; 44(5): 2173-86, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26405198

ABSTRACT

The non-homologous end-joining (NHEJ) pathway repairs DNA double-strand breaks (DSBs) in all domains of life. Archaea and bacteria utilize a conserved set of multifunctional proteins in a pathway termed Archaeo-Prokaryotic (AP) NHEJ that facilitates DSB repair. Archaeal NHEJ polymerases (Pol) are capable of strand displacement synthesis, whilst filling DNA gaps or partially annealed DNA ends, which can give rise to unligatable intermediates. However, an associated NHEJ phosphoesterase (PE) resects these products to ensure that efficient ligation occurs. Here, we describe the crystal structures of these archaeal (Methanocella paludicola) NHEJ nuclease and polymerase enzymes, demonstrating their strict structural conservation with their bacterial NHEJ counterparts. Structural analysis, in conjunction with biochemical studies, has uncovered the molecular basis for DNA strand displacement synthesis in AP-NHEJ, revealing the mechanisms that enable Pol and PE to displace annealed bases to facilitate their respective roles in DSB repair.


Subject(s)
Archaea/enzymology , Archaeal Proteins/chemistry , DNA End-Joining Repair , DNA, Archaeal/chemistry , DNA-Directed DNA Polymerase/chemistry , Phosphoprotein Phosphatases/chemistry , Amino Acid Sequence , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/enzymology , Bacteria/genetics , Cloning, Molecular , Crystallography, X-Ray , DNA Breaks, Double-Stranded , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Models, Molecular , Molecular Sequence Data , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structural Homology, Protein
4.
Cell Rep ; 5(4): 1108-20, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24239356

ABSTRACT

Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5'-3' direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3' overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3' overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3' ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.


Subject(s)
Bacterial Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA Repair Enzymes/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , DNA Primers/genetics , DNA Repair Enzymes/genetics
5.
Proc Natl Acad Sci U S A ; 110(22): E1984-91, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23671117

ABSTRACT

Nonhomologous end-joining (NHEJ) pathways repair DNA double-strand breaks (DSBs) in eukaryotes and many prokaryotes, although it is not reported to operate in the third domain of life, archaea. Here, we describe a complete NHEJ complex, consisting of DNA ligase (Lig), polymerase (Pol), phosphoesterase (PE), and Ku from a mesophillic archaeon, Methanocella paludicola (Mpa). Mpa Lig has limited DNA nick-sealing activity but is efficient in ligating nicks containing a 3' ribonucleotide. Mpa Pol preferentially incorporates nucleoside triphosphates onto a DNA primer strand, filling DNA gaps in annealed breaks. Mpa PE sequentially removes 3' phosphates and ribonucleotides from primer strands, leaving a ligatable terminal 3' monoribonucleotide. These proteins, together with the DNA end-binding protein Ku, form a functional NHEJ break-repair apparatus that is highly homologous to the bacterial complex. Although the major roles of Pol and Lig in break repair have been reported, PE's function in NHEJ has remained obscure. We establish that PE is required for ribonucleolytic resection of RNA intermediates at annealed DSBs. Polymerase-catalyzed strand-displacement synthesis on DNA gaps can result in the formation of nonligatable NHEJ intermediates. The function of PE in NHEJ repair is to detect and remove inappropriately incorporated ribonucleotides or phosphates from 3' ends of annealed DSBs to configure the termini for ligation. Thus, PE prevents the accumulation of abortive genotoxic DNA intermediates arising from strand displacement synthesis that otherwise would be refractory to repair.


Subject(s)
Biological Evolution , DNA Breaks, Double-Stranded , DNA End-Joining Repair/physiology , Euryarchaeota/physiology , RNA/metabolism , Ribonucleases/metabolism , Ribonucleotides/metabolism , DNA End-Joining Repair/genetics , DNA Helicases/metabolism , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Euryarchaeota/genetics , Fluorescence , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...