Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 401: 109990, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37866457

ABSTRACT

BACKGROUND: Reaching, grasping, and pulling behaviors are studied across species to investigate motor control and problem solving. String pulling is a distinct reaching and grasping behavior that is rapidly learned, requires bimanual coordination, is ethologically grounded, and has been applied across species and disease conditions. NEW METHOD: Here we describe the PANDA system (Pulling And Neural Data Analysis), a hardware and software system that integrates a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for the assessment and training of reaching, grasping, and pulling behaviors and synchronization with neural data. RESULTS: We demonstrate this system in rats implanted with electrodes in motor cortex and hippocampus and show how it can be used to assess relationships between reaching, pulling, and grasping movements and single-unit and local-field activity. Furthermore, we found that automating the shaping procedure significantly improved performance over manual training, with rats pulling > 100 m during a 15-minute session. COMPARISON WITH EXISTING METHODS: String-pulling is typically shaped by tying food reward to the string and visually scoring behavior. The system described here automates training, streamlines video assessment with deep learning, and automatically segments reaching movements into distinct reach/pull phases. No system, to our knowledge, exists for the automated shaping and assessment of this behavior. CONCLUSIONS: This system will be of general use to researchers investigating motor control, motivation, sensorimotor integration, and motor disorders such as Parkinson's disease and stroke.


Subject(s)
Movement , Rodentia , Rats , Animals , Reward , Motivation , Problem Solving , Psychomotor Performance
2.
Brain Res ; 1821: 148613, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37783263

ABSTRACT

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA. While nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, it affected the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of l-DOPA in a rat PD model with a moderate striatal 6-hydroxdopamine (6-OHDA) lesion. We tested five escalating doses of l-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg l-DOPA doses. However, after reaching the 72 mg/kg l-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of l-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we observed an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Rats , Animals , Levodopa/adverse effects , Dopamine , Receptors, Opioid, kappa , Rats, Sprague-Dawley , Parkinson Disease/drug therapy , Corpus Striatum , Oxidopamine/toxicity , Disease Models, Animal
3.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37577558

ABSTRACT

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA. Nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, but a change in the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of L-DOPA in a rat PD model with a moderate striatal 6-hydroxydopamine (6-OHDA) lesion. We tested five escalating doses of L-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg L-DOPA doses. However, after dosing with 72 mg/kg L-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of L-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we saw an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.

4.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37461637

ABSTRACT

String-pulling tasks have been used for centuries to study coordinated bimanual motor behavior and problem solving. String pulling is rapidly learned, ethologically grounded, and has been applied to many species and disease conditions. Typically, training of string-pulling behaviors is achieved through manual shaping and baiting. Furthermore, behavioral assessment of reaching, grasping, and pulling is often performed through labor intensive manual video scoring. No system, to our knowledge, currently exists for the automated shaping and assessment of string-pulling behaviors. Here we describe the PANDA system (Pulling And Neural Data Analysis), an inexpensive hardware and software system that utilizes a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for assessment and training of string-pulling behaviors and synchronization with neural recording data. We demonstrate this system in unimplanted rats and rats implanted with electrodes in motor cortex and hippocampus and show how the PANDA system can be used to assess relationships between paw movements and single-unit and local-field activity. We also found that automating the shaping procedure significantly improved overall performance, with rats regularly pulling >100 meters during a 15-minute session. In conclusion, the PANDA system will be of general use to researchers investigating motor control, motivation, and motor disorders such as Parkinson's disease, Huntington's disease, and stroke. It will also support the investigation of neural mechanisms involved in sensorimotor integration.

5.
ACS Med Chem Lett ; 14(2): 163-170, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793431

ABSTRACT

Acute and chronic pain is often treated with opioids despite the negative side effects of constipation, physical dependence, respiratory depression, and overdose. The misuse of opioid analgesics has given rise to the opioid crisis/epidemic, and alternate nonaddictive analgesics are urgently needed. Oxytocin, a pituitary hormone, is an alternative to the small molecule treatments available and has been used as an analgesic as well as for the treatment and prevention of opioid use disorder (OUD). Clinical implementation is limited by its poor pharmacokinetic profile, a result of the labile disulfide bond between two cysteine residues in the native sequence. Stable brain penetrant oxytocin analogues have been synthesized by replacement of the disulfide bond with a stable lactam and glycosidation of the C-terminus. These analogues show exquisite selectivity for the oxytocin receptor and potent in vivo antinociception in mice following peripheral (i.v.) administration, supporting further study of their clinical potential.

6.
Article in English | MEDLINE | ID: mdl-35237767

ABSTRACT

There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.

7.
Neurosci Lett ; 765: 136251, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34536508

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characterized by motor dysfunction. While PD symptoms are well treated with L-DOPA, continuous use can cause L-DOPA-induced dyskinesia (LID). We have previously demonstrated that sub-anesthetic ketamine attenuated LID development in rodents, measured by abnormal involuntary movements (AIMs), and reduced the density of maladaptive striatal dendritic mushroom spines. Microglia may play a role by phagocytosing maladaptive neuronal spines. In this exploratory study, we hypothesized that ketamine would prevent AIMs and change microglia ramified morphology - an indicator of a microglia response. Unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats were primed with daily injections of L-DOPA for 14 days, treated on days 0 and 7 for 10-hours with sub-anesthetic ketamine (i.p.), and we replicated that this attenuated LID development. We further extended our prior work by showing that while ketamine treatment did lead to an increase of striatal interleukin-6 in dyskinetic rats, indicating a modulation of an inflammatory response, it did not change microglia number or morphology in the dyskinetic striatum. Yet an increase of CD68 in the SNpc of 6-OHDA-lesioned hemispheres post-ketamine indicates increased microglia phagocytosis suggestive of a lingering microglial response to 6-OHDA injury in the SNpc pointing to possible anti-inflammatory action in the PD model in addition to anti-dyskinetic action. In conclusion, we provide further support for sub-anesthetic ketamine treatment of LID. The mechanisms of action for ketamine, specifically related to inflammation and microglia phagocytic functions, are emerging, and require further examination.


Subject(s)
Dyskinesia, Drug-Induced/prevention & control , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Levodopa/administration & dosage , Parkinson Disease/drug therapy , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/pathology , Humans , Levodopa/adverse effects , Male , Microglia/drug effects , Microglia/pathology , Phagocytosis/drug effects , Rats , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Substantia Nigra/drug effects , Substantia Nigra/pathology
8.
Exp Neurol ; 340: 113670, 2021 06.
Article in English | MEDLINE | ID: mdl-33662379

ABSTRACT

L-DOPA-induced dyskinesias (LID) are debilitating motor symptoms of dopamine-replacement therapy for Parkinson's disease (PD) that emerge after years of L-DOPA treatment. While there is an abundance of research into the cellular and synaptic origins of LID, less is known about how LID impacts systems-level circuits and neural synchrony, how synchrony is affected by the dose and duration of L-DOPA exposure, or how potential novel treatments for LID, such as sub-anesthetic ketamine, alter this activity. Sub-anesthetic ketamine treatments have recently been shown to reduce LID, and ketamine is known to affect neural synchrony. To investigate these questions, we measured movement and local-field potential (LFP) activity from the motor cortex (M1) and the striatum of preclinical rodent models of PD and LID. In the first experiment, we investigated the effect of the LID priming procedures and L-DOPA dose on neural signatures of LID. Two common priming procedures were compared: a high-dose procedure that exposed unilateral 6-hydroxydopamine-lesioned rats to 12 mg/kg L-DOPA for 7 days, and a low-dose procedure that exposed rats to 7 mg/kg L-DOPA for 21 days. Consistent with reports from other groups, 12 mg/kg L-DOPA triggered LID and 80-Hz oscillations; however, these 80-Hz oscillations were not observed after 7 mg/kg administration despite clear evidence of LID, indicating that 80-Hz oscillations are not an exclusive signature of LID. We also found that weeks-long low-dose priming resulted in the emergence of non-oscillatory broadband gamma activity (> 30 Hz) in the striatum and theta-to-high-gamma cross-frequency coupling (CFC) in M1. In a second set of experiments, we investigated how ketamine exposure affects spectral signatures of low-dose L-DOPA priming. During each neural recording session, ketamine was delivered through 5 injections (20 mg/kg, i.p.) administered every 2 h. We found that ketamine exposure suppressed striatal broadband gamma associated with LID but enhanced M1 broadband activity. We also found that M1 theta-to-high-gamma CFC associated with the LID on-state was suppressed by ketamine. These results suggest that ketamine's therapeutic effects are region specific. Our findings also have clinical implications, as we are the first to report novel oscillatory signatures of the common low-dose LID priming procedure that more closely models dopamine replacement therapy in individuals with PD. We also identify neural correlates of the anti-dyskinetic activity of sub-anesthetic ketamine treatment.


Subject(s)
Dyskinesia, Drug-Induced/prevention & control , Dyskinesia, Drug-Induced/physiopathology , Gamma Rhythm/drug effects , Ketamine/therapeutic use , Levodopa/toxicity , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Antiparkinson Agents/toxicity , Dose-Response Relationship, Drug , Gamma Rhythm/physiology , Ketamine/pharmacology , Male , Oxidopamine/toxicity , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Rats , Rats, Sprague-Dawley
9.
J Neuroinflammation ; 18(1): 58, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618737

ABSTRACT

BACKGROUND: Ischemic stroke is an acquired brain injury with gender-dependent outcomes. A persistent obstacle in understanding the sex-specific neuroinflammatory contributions to ischemic brain injury is distinguishing between resident microglia and infiltrating macrophages-both phagocytes-and determining cell population-specific contributions to injury evolution and recovery processes. Our purpose was to identify microglial and macrophage populations regulated by ischemic stroke using morphology analysis and the presence of microglia transmembrane protein 119 (TMEM119). Second, we examined sex and menopause differences in microglia/macrophage cell populations after an ischemic stroke. METHODS: Male and female, premenopausal and postmenopausal, mice underwent either 60 min of middle cerebral artery occlusion and 24 h of reperfusion or sham surgery. The accelerated ovarian failure model was used to model postmenopause. Brain tissue was collected to quantify the infarct area and for immunohistochemistry and western blot methods. Ionized calcium-binding adapter molecule, TMEM119, and confocal microscopy were used to analyze the microglia morphology and TMEM119 area in the ipsilateral brain regions. Western blot was used to quantify protein quantity. RESULTS: Post-stroke injury is increased in male and postmenopause female mice vs. premenopause female mice (p < 0.05) with differences primarily occurring in the caudal sections. After stroke, the microglia underwent a region, but not sex group, dependent transformation into less ramified cells (p < 0.0001). However, the number of phagocytic microglia was increased in distal ipsilateral regions of postmenopausal mice vs. the other sex groups (p < 0.05). The number of TMEM119-positive cells was decreased in proximity to the infarct (p < 0.0001) but without a sex group effect. Two key findings prevented distinguishing microglia from systemic macrophages. First, morphological data were not congruent with TMEM119 immunofluorescence data. Cells with severely decreased TMEM119 immunofluorescence were ramified, a distinguishing microglia characteristic. Second, whereas the TMEM119 immunofluorescence area decreased in proximity to the infarcted area, the TMEM119 protein quantity was unchanged in the ipsilateral hemisphere regions using western blot methods. CONCLUSIONS: Our findings suggest that TMEM119 is not a stable microglia marker in male and female mice in the context of ischemic stroke. Until TMEM119 function in the brain is elucidated, its use to distinguish between cell populations following brain injury with cell infiltration is cautioned.


Subject(s)
Ischemic Stroke/pathology , Macrophages/pathology , Membrane Proteins/metabolism , Microglia/pathology , Reperfusion Injury/pathology , Animals , Biomarkers/metabolism , Female , Macrophages/metabolism , Male , Mice , Microglia/metabolism , Sex Characteristics
10.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33374986

ABSTRACT

In previous work we evaluated an opioid glycopeptide with mixed µ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood-brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus Phyllomedusa). We tested BBI-11008 for BBB-penetration after intraperitoneal (i.p.) injection and evaluated effects in LID rats. BBI-11008 (10 mg/kg) demonstrated good CNS-penetrance as shown by microdialysis and mass spectrometric analysis, with peak concentration levels of 150 pM in the striatum. While BBI-11008 at both 10 and 20 mg/kg produced no effect on levodopa-induced limb, axial and oral (LAO) abnormal involuntary movements (AIMs), it reduced the levodopa-induced locomotor AIMs by 50% after systemic injection. The N-methyl-D-aspartate receptor antagonist MK-801 reduced levodopa-induced LAO AIMs, but worsened PD symptoms in this model. Co-administration of MMP-2200 had been shown prior to block the MK-801-induced pro-Parkinsonian activity. Interestingly, BBI-11008 was not able to block the pro-Parkinsonian effect of MK-801 in the LID model, further indicating that a balance of mu- and delta-opioid agonism is required for this modulation. In summary, this study illustrates another example of meaningful BBB-penetration of a glycopeptide analogue of a peptide to achieve a central behavioral effect, providing additional evidence for the glycosylation technique as a method to harness therapeutic potential of peptides.


Subject(s)
Disease Models, Animal , Dyskinesia, Drug-Induced/physiopathology , Glycopeptides/pharmacology , Motor Activity/drug effects , Parkinson Disease, Secondary/physiopathology , Receptors, Opioid, delta/agonists , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/pharmacology , Animals , Corpus Striatum/metabolism , Dizocilpine Maleate/pharmacology , Dyskinesia, Drug-Induced/metabolism , Glycopeptides/administration & dosage , Glycopeptides/pharmacokinetics , Levodopa , Male , Motor Activity/physiology , Neuroprotective Agents/pharmacology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Rats, Sprague-Dawley , Receptors, Opioid, delta/metabolism
11.
Exp Neurol ; 333: 113413, 2020 11.
Article in English | MEDLINE | ID: mdl-32717354

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. Pharmacotherapy with L-DOPA remains the gold-standard therapy for PD, but is often limited by the development of the common side effect of L-DOPA-induced dyskinesia (LID), which can become debilitating. The only effective treatment for disabling dyskinesia is surgical therapy (neuromodulation or lesioning), therefore effective pharmacological treatment of LID is a critical unmet need. Here, we show that sub-anesthetic doses of ketamine attenuate the development of LID in a rodent model, while also having acute anti-parkinsonian activity. The long-term anti-dyskinetic effect is mediated by brain-derived neurotrophic factor-release in the striatum, followed by activation of ERK1/2 and mTOR pathway signaling. This ultimately leads to morphological changes in dendritic spines on striatal medium spiny neurons that correlate with the behavioral effects, specifically a reduction in the density of mushroom spines, a dendritic spine phenotype that shows a high correlation with LID. These molecular and cellular changes match those occurring in hippocampus and cortex after effective sub-anesthetic ketamine treatment in preclinical models of depression, and point to common mechanisms underlying the therapeutic efficacy of ketamine for these two disorders. These preclinical mechanistic studies complement current ongoing clinical testing of sub-anesthetic ketamine for the treatment of LID by our group, and provide further evidence in support of repurposing ketamine to treat individuals with PD. Given its clinically proven therapeutic benefit for both treatment-resistant depression and several pain states, very common co-morbidities in PD, sub-anesthetic ketamine could provide multiple therapeutic benefits for PD in the future.


Subject(s)
Anesthetics, Dissociative/therapeutic use , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Ketamine/therapeutic use , Levodopa/adverse effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dendritic Spines/drug effects , Dendritic Spines/pathology , Depression/drug therapy , Depression/psychology , Drug Repositioning , MAP Kinase Signaling System/drug effects , Male , Neurons/drug effects , Neurons/pathology , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/drug effects
12.
Front Neurol ; 11: 324, 2020.
Article in English | MEDLINE | ID: mdl-32477237

ABSTRACT

Sleep disturbances co-occur with and precede the onset of motor symptoms in Parkinson's disease (PD). We evaluated sleep fragmentation and thalamocortical sleep spindles in mice expressing the p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene, one of the most common genetic forms of PD. Thalamocortical sleep spindles are oscillatory events that occur during slow-wave sleep that are involved in memory consolidation. We acquired data from electrocorticography, sleep behavioral measures, and a rotarod-based motor enrichment task in 28 LRRK2-G2019S knock-in mice and 27 wild-type controls (8-10 month-old males). Sleep was more fragmented in LRRK2-G2019S mice; sleep bouts were shorter and more numerous, even though total sleep time was similar to controls. LRRK2-G2019S animals expressed more sleep spindles, and individual spindles were longer in duration than in controls. We then chronically administered the LRRK2-inhibitor MLi-2 in-diet to n = 12 LRRK2-G2019S and n = 15 wild-type mice for a within-subject analysis of the effects of kinase inhibition on sleep behavior and physiology. Treatment with MLi-2 did not impact these measures. The data indicate that the LRRK2-G2019S mutation could lead to reduced sleep quality and altered sleep spindle physiology. This suggests that sleep spindles in LRRK2-G2019S animals could serve as biomarkers for underlying alterations in sleep networks resulting from the LRRK2-G2019S mutation, and further evaluation in human LRRK2-G2019S carriers is therefore warranted.

13.
BMC Res Notes ; 13(1): 149, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32164786

ABSTRACT

OBJECTIVES: Dopamine-replacement utilizing L-DOPA is still the mainstay treatment for Parkinson's disease (PD), but often leads to development of L-DOPA-induced dyskinesia (LID), which can be as debilitating as the motor deficits. There is currently no satisfactory pharmacological adjunct therapy. The endogenous opioid peptides enkephalin and dynorphin are important co-transmitters in the direct and indirect striatofugal pathways and have been implicated in genesis and expression of LID. Opioid receptor antagonists and agonists with different selectivity profiles have been investigated for anti-dyskinetic potential in preclinical models. In this study we investigated effects of the highly-selective µ-opioid receptor antagonist CTAP (> 1200-fold selectivity for µ- over δ-opioid receptors) and a novel glycopeptide congener (gCTAP5) that was glycosylated to increase stability, in the standard rat LID model. RESULTS: Intraperitoneal administration (i.p.) of either 0.5 mg/kg or 1 mg/kg CTAP and gCTAP5 completely blocked morphine's antinociceptive effect (10 mg/kg; i.p.) in the warm water tail-flick test, showing in vivo activity in rats after systemic injection. Neither treatment with CTAP (10 mg/kg; i.p.), nor gCTAP5 (5 mg/kg; i.p.) had any effect on L-DOPA-induced limb, axial, orolingual, or locomotor abnormal involuntary movements. The data indicate that highly-selective µ-opioid receptor antagonism alone might not be sufficient to be anti-dyskinetic.


Subject(s)
Dyskinesia, Drug-Induced/drug therapy , Levodopa/adverse effects , Narcotic Antagonists/therapeutic use , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Disease Models, Animal , Glycopeptides/pharmacology , Male , Morphine/pharmacology , Nociception/drug effects , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism
14.
J Pharmacol Exp Ther ; 369(1): 9-25, 2019 04.
Article in English | MEDLINE | ID: mdl-30709867

ABSTRACT

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.


Subject(s)
Angiotensin I/chemistry , Angiotensin I/pharmacology , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Dementia, Vascular/complications , Memory/drug effects , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/agonists , Receptors, G-Protein-Coupled/agonists , Angiotensin I/pharmacokinetics , Angiotensin I/therapeutic use , Animals , Behavior, Animal/drug effects , Biomarkers/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Electrocardiography , Glycosylation , Half-Life , Heart Failure/complications , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/physiopathology , Male , Maze Learning/drug effects , Mice , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Proto-Oncogene Mas , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spatial Memory/drug effects , Ventricular Remodeling/drug effects
15.
Neuropharmacology ; 141: 260-271, 2018 10.
Article in English | MEDLINE | ID: mdl-30201210

ABSTRACT

Dopamine (DA)-replacement therapy utilizing l-DOPA is the gold standard symptomatic treatment for Parkinson's disease (PD). A critical complication of this therapy is the development of l-DOPA-induced dyskinesia (LID). The endogenous opioid peptides, including enkephalins and dynorphin, are co-transmitters of dopaminergic, GABAergic, and glutamatergic transmission in the direct and indirect striatal output pathways disrupted in PD, and alterations in expression levels of these peptides and their precursors have been implicated in LID genesis and expression. We have previously shown that the opioid glycopeptide drug MMP-2200 (a.k.a. Lactomorphin), a glycosylated derivative of Leu-enkephalin mediates potent behavioral effects in two rodent models of striatal DA depletion. In this study, the mixed mu-delta agonist MMP-2200 was investigated in standard preclinical rodent models of PD and of LID to evaluate its effects on abnormal involuntary movements (AIMs). MMP-2200 showed antiparkinsonian activity, while increasing l-DOPA-induced limb, axial, and oral (LAO) AIMs by ∼10%, and had no effect on dopamine receptor 1 (D1R)-induced LAO AIMs. In contrast, it markedly reduced dopamine receptor 2 (D2R)-like-induced LAO AIMs. The locomotor AIMs were reduced by MMP-2200 in all three conditions. The N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 has previously been shown to be anti-dyskinetic, but only at doses that induce parkinsonism. When MMP-2200 was co-administered with MK-801, MK-801-induced pro-parkinsonian activity was suppressed, while a robust anti-dyskinetic effect remained. In summary, the opioid glycopeptide MMP-2200 reduced AIMs induced by a D2R-like agonist, and MMP-2200 modified the effect of MK-801 to result in a potent reduction of l-DOPA-induced AIMs without induction of parkinsonism.


Subject(s)
Benzazepines/pharmacology , Dyskinesia, Drug-Induced/prevention & control , Glycopeptides/pharmacology , Levodopa/adverse effects , Parkinson Disease, Secondary/prevention & control , Quinpirole/antagonists & inhibitors , Animals , Antiparkinson Agents/pharmacology , Benzazepines/antagonists & inhibitors , Dizocilpine Maleate/antagonists & inhibitors , Dizocilpine Maleate/pharmacology , Drug Synergism , Levodopa/antagonists & inhibitors , Male , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Quinpirole/pharmacology , Rats
16.
Front Neural Circuits ; 12: 61, 2018.
Article in English | MEDLINE | ID: mdl-30150926

ABSTRACT

Introduction: Treatment-resistant depression, post-traumatic stress disorder, chronic pain, and L-DOPA-induced dyskinesia in Parkinson's disease are characterized by hypersynchronous neural oscillations. Sub-anesthetic ketamine is effective at treating these conditions, and this may relate to ketamine's capacity to reorganize oscillatory activity throughout the brain. For example, a single ketamine injection increases gamma (∼40 Hz) and high-frequency oscillations (HFOs, 120-160 Hz) in the cortex, hippocampus, and striatum. While the effects of single injections have been investigated, clinical ketamine treatments can involve 5-h up to 3-day sub-anesthetic infusions. Little is known about the effects of such prolonged exposure on neural synchrony. We hypothesized that hours-long exposure entrains circuits that generate HFOs so that HFOs become sustained after ketamine's direct effects on receptors subside. Methods: Local-field recordings were acquired from motor cortex (M1), striatum, and hippocampus of behaving rats (n = 8), and neural responses were measured while rats received 5 ketamine injections (20 mg/kg, i.p., every 2 h, 10-h exposure). In a second experiment, the same animals received injections of D1-receptor antagonist (SCH-23390, 1 mg/kg, i.p.) prior to ketamine injection to determine if D1 receptors were involved in producing HFOs. Results: Although HFOs remained stable throughout extended ketamine exposure, broad-band high-frequency activity (40-140 Hz) in the hippocampus and delta-HFO cross-frequency coupling (CFC) in dorsal striatum increased with the duration of exposure. Furthermore, while ketamine-triggered HFOs were not affected by D1 receptor blockade, ketamine-associated gamma in motor cortex was suppressed, suggesting involvement of D1 receptors in ketamine-mediated gamma activity in motor cortex. Conclusion: Prolonged ketamine exposure does not enhance HFOs in corticostriatal circuits, but, instead, enhances coordination between low and high frequencies in the striatum and reduces synchrony in the hippocampus. Increased striatal CFC may facilitate spike-timing dependent plasticity, resulting in lasting changes in motor activity. In contrast, the observed wide-band high-frequency "noise" in the hippocampus suggests that ketamine disrupts action-potential timing and reorganizes connectivity in this region. Differential restructuring of corticostriatal and limbic circuits may contribute to ketamine's clinical benefits.


Subject(s)
Dopamine Antagonists/pharmacology , Electroencephalography Phase Synchronization/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gamma Rhythm/drug effects , Hippocampus/drug effects , Ketamine/pharmacology , Receptors, Dopamine D1/antagonists & inhibitors , Animals , Behavior, Animal , Corpus Striatum/drug effects , Dopamine Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Ketamine/administration & dosage , Male , Motor Cortex/drug effects , Rats , Rats, Sprague-Dawley
17.
Behav Brain Res ; 333: 1-8, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28647594

ABSTRACT

Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments.


Subject(s)
Brain/pathology , Cell Adhesion Molecules/deficiency , Inhibition, Psychological , Neurons/metabolism , Schizophrenia/pathology , Stress, Psychological/pathology , Animals , Cell Adhesion Molecules/genetics , Conditioning, Psychological/physiology , Disease Models, Animal , Freezing , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Inhibition/genetics , Proto-Oncogene Proteins c-fos/metabolism
18.
Behav Brain Res ; 324: 96-99, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28212945

ABSTRACT

Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders. Previous studies examined timing in various strains or genetically-altered mice, but not in parallel in male and female mice in the same experimental setting. We investigated timing and attention to time in male and female C57Bl/6J mice, when presented with gaps in the timed stimulus, novel auditory distracters presented during the un-interrupted timed stimulus, and gap+distracter combinations. No sex differences were found in regard to timing accuracy and precision. However, presentation of the gap+distracter combination over-reset timing in males but had a much smaller effect in females. The over-reset strategy was reported previously with emotional distracters (e.g., previously paired with footshock) but not with neutral distracters. These results reveal sex differences in attentional gating/switching or working memory for time.


Subject(s)
Attention , Memory, Short-Term , Sex Characteristics , Time Perception , Animals , Auditory Perception , Female , Male , Mice, Inbred C57BL
19.
Neurosci Lett ; 612: 121-125, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26644333

ABSTRACT

Low-dose sub-anesthetic ketamine infusion treatment has led to a long-term reduction of treatment-resistant depression and posttraumatic stress disorder (PTSD) symptom severity, as well as reduction of chronic pain states, including migraine headaches. Ketamine also is known to change oscillatory electric brain activity. One commonality between migraine headaches, depression, PTSD, Parkinson's disease (PD) and l-DOPA-induced dyskinesias (LID) is hypersynchrony of electric activity in the brain, including the basal ganglia. Therefore, we investigated the use of low-dose sub-anesthetic ketamine in the treatment of LID. In a preclinical rodent model of LID, ketamine (5-20mg/kg) led to long-term dose-dependent reduction of abnormal involuntary movements, only when low-dose ketamine was given for 10h continuously (5× i.p. injections two hours apart) and not after a single acute low-dose ketamine i.p. injection. Pharmacokinetic analysis of plasma levels showed ketamine and its major metabolites were not detectable any more at time points when a lasting anti-dyskinetic effect was seen, indicating a plastic change in the brain. This novel use of low-dose sub-anesthetic ketamine infusion could lead to fast clinical translation, and since depression and comorbid pain states are critical problems for many PD patients could open up the road to a new dual therapy for patients with LID.


Subject(s)
Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Ketamine/therapeutic use , Levodopa/adverse effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, Opioid/agonists , Animals , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced/physiopathology , Ketamine/pharmacokinetics , Male , Rats, Sprague-Dawley , Time Factors
20.
Neurosci Lett ; 564: 48-52, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24525249

ABSTRACT

Dopamine-replacement therapy with l-DOPA is still the gold standard treatment for Parkinson's disease (PD). One drawback is the common development of l-DOPA-induced dyskinesia (LID) in patients, which can be as disabling as the disease itself. There is no satisfactory adjunct therapy available. Glutamatergic transmission in the basal ganglia circuitry has been shown to be an important player in the development of LID. The N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 has previously been shown to reduce l-DOPA-induced abnormal involuntary movements (AIMs) in a rat preclinical model but only at concentrations that worsen parkinsonism. We investigated the contribution of the direct and indirect striatofugal pathways to these effects. In the direct pathway, dopamine D1 receptors (D1R) are expressed, whereas in the indirect pathway, dopamine D2 receptors (D2R) are expressed. We used the 6-hydroxydopamine-lesioned hemi-parkinsonian rat model initially primed with l-DOPA to induce dyskinesia. When the rats were then primed and probed with the D1R agonist SKF81297, co-injection of MK-801 worsened the D1R-induced limb, axial, and orolingual (LAO) AIMs by 18% (predominantly dystonic axial AIMs) but did not aggravate parkinsonian hypokinesia as reflected by a surrogate measure of ipsiversive rotations in this model. In contrast, when the rats were then primed and probed with the D2R agonist quinpirole, co-injection of MK-801 reduced D2R-induced LAO AIMs by 89% while inducing ipsiversive rotations. The data show that only inhibition of the indirect striatopallidal pathway is sufficient for the full anti-dyskinetic/pro-parkinsonian effects of the NMDA receptor antagonist MK-801, and that MK-801 modestly worsens dyskinesias that are due to activation of the direct striatonigral pathway alone. This differential activation of the glutamatergic systems in D1R- and D2R-mediated responses is relevant to current therapy for PD which generally includes a mixture of dopamine agonists and l-DOPA.


Subject(s)
Dizocilpine Maleate/therapeutic use , Dyskinesia, Drug-Induced/drug therapy , Excitatory Amino Acid Antagonists/therapeutic use , Parkinson Disease/drug therapy , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...