Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 59: 129-135, 2018 09.
Article in English | MEDLINE | ID: mdl-29986307

ABSTRACT

Methionine partitioning between protein turnover and a considerable pool of transmethylation precursors is a critical process in the neonate. Transmethylation yields homocysteine, which is either oxidized to cysteine (i.e., transsulfuration), or is remethylated to methionine by folate- or betaine- (from choline) mediated remethylation pathways. The present investigation quantifies the individual and synergistic importance of folate and betaine for methionine partitioning in neonates. To minimize whole body remethylation, 4-8-d-old piglets were orally fed an otherwise complete diet without remethylation precursors folate, betaine and choline (i.e. methyl-deplete, MD-) (n=18). Dietary methionine was reduced from 0.3 to 0.2 g/(kg∙d) on day-5 to limit methionine availability, and methionine kinetics were assessed during a gastric infusion of [13C1]methionine and [2H3-methyl]methionine. Methionine kinetics were reevaluated 2 d after pigs were rescued with either dietary folate (38 µg/(kg∙d)) (MD + F) (n=6), betaine (235 mg/(kg∙d)) (MD + B) (n=6) or folate and betaine (MD + FB) (n=6). Plasma choline, betaine, dimethylglycine (DMG), folate and cysteine were all diminished or undetectable after 7 d of methyl restriction (P<.05). Post-rescue, plasma betaine and folate concentrations responded to their provision, and homocysteine and glycine concentrations were lower (P<.05). Post-rescue, remethylation and transmethylation rates were~70-80% higher (P<.05), and protein breakdown was spared by 27% (P<.05). However, rescue did not affect transsulfuration (oxidation), plasma methionine, protein synthesis or protein deposition (P>.05). There were no differences among rescue treatments; thus betaine was as effective as folate at furnishing remethylation. Supplemental betaine or folate can furnish the transmethylation requirement during acute protein restriction in the neonate.


Subject(s)
Betaine/pharmacology , Folic Acid/pharmacology , Methionine/metabolism , Animals , Animals, Newborn , Betaine/pharmacokinetics , Blood/drug effects , Blood/metabolism , Choline/pharmacology , Female , Folic Acid/pharmacokinetics , Male , Methionine/pharmacology , Methylation/drug effects , Swine , Vitamin U/pharmacokinetics , Vitamin U/pharmacology
2.
Amino Acids ; 48(12): 2821-2830, 2016 12.
Article in English | MEDLINE | ID: mdl-27562792

ABSTRACT

Methionine metabolism is critical during development with significant requirements for protein synthesis and transmethylation reactions. However, separate requirements of methionine for protein synthesis and transmethylation are difficult to define because after transmethylation, demethylated methionine is either irreversibly oxidized to cysteine during transsulfuration, or methionine is regenerated by the dietary methyl donors, choline (via betaine) or folate during remethylation. We hypothesized that remethylation contributes significantly to methionine availability and affects partitioning between protein and transmethylation. 4-8-day-old neonatal piglets were fed a diet devoid (MD-) (n = 8) or replete (MS+) (n = 8) of folate, choline and betaine to limit remethylation. After 5 days, dietary methionine was reduced to 80 % of requirement in both groups of piglets to ensure methionine availability was limited. On day 7, an intragastric infusion of [13C1]methionine and [2H3-methyl]methionine was administered to measure methionine cycle flux. In MD- piglets, in vivo remethylation was 60 % lower despite 23-fold greater conversion of choline to betaine (P < 0.05) and transmethylation was 56 % lower (P < 0.05), suggesting dietary methyl donors spared 425 µmol methyl/day for transmethylation. The priority of protein synthesis versus transmethylation was clear during MD- feeding (P < 0.05), as an additional 6 % of methionine flux was for protein synthesis in those piglets (P < 0.05). However, whole body transsulfuration was unaffected in vivo despite reduced in vitro cystathionine-ß-synthase capacity in MD- piglets (P < 0.05). Our data show that remethylation contributes significantly to methionine availability and that transmethylation is sacrificed to maintain protein synthesis when methionine is limiting in neonates, which should be considered when determining the methionine requirement.


Subject(s)
Cysteine/metabolism , Diet , Methionine/metabolism , Protein Biosynthesis , Animals , Betaine/metabolism , Choline/metabolism , Cysteine/chemistry , Feeding Behavior , Folic Acid/metabolism , Methionine/administration & dosage , Methionine/analogs & derivatives , Methionine/chemistry , Methylation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...