Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 76(2): 433-441, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26303011

ABSTRACT

RATIONALE: Neutrophils play a fundamental role in a number of chronic lung diseases. Among the mediators of their recruitment to the lung, CXCL8 (IL-8) is considered to be one of the major players. CXCL8 exerts its chemotactic activity by binding to its GPCR receptors (CXCR1/R2) located on neutrophils, as well as through interactions with glycosaminoglycans (GAGs) on cell surfaces including those of the microvascular endothelium. Binding to GAG co-receptors is required to generate a solid-phase haptotactic gradient and to present IL-8/CXCL8 in a proper conformation to its receptors on circulating neutrophils. METHODS: We have engineered increased GAG-binding affinity into human CXCL8, thereby obtaining a competitive inhibitor that displaces wild-type IL-8/CXCL8 from GAGs. By additionally knocking-out the GPCR binding domain of the chemokine, we generated a dominant negative protein (dnCXCL8; PA401) with potent anti-inflammatory characteristics proven in vivo in a murine model of LPS-induced lung inflammation (Adage et al., 2015). Here we have further investigated PA401 activity in this pulmonary model by evaluating plasma changes induced by LPS on white blood cells (WBC) and a broad range of inflammatory markers, especially chemokines, by addressing immediate effects of PA401 on these parameters in healthy and LPS exposed mice. RESULTS: Aerosolized LPS induced a significant increase in bronchoalveolar lavage (BAL) neutrophils after 3 and 7h, as well as an increase in total WBC and changes in 21 of the 59 measured plasma markers, mostly belonging to the chemokine family. PA401 treatment in saline exposed mice didn't induce major changes in any of the measured parameters. When administered to LPS aerosolized mice, PA401 caused a significant normalization of KC/mCXCL1 and other inflammatory markers, as well as of blood WBC count. In addition, BAL neutrophils were significantly reduced, confirming the previously observed lung anti-inflammatory activity of PA401 in this experiment. CONCLUSIONS: PA401 is a new promising biologic therapeutic with a novel and unique mechanism of action for interfering with neutrophilic lung inflammation, that also normalizes plasma inflammatory markers.


Subject(s)
Biomarkers/metabolism , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glycosaminoglycans/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , Neutrophils/drug effects , Pneumonia/chemically induced , Recombinant Proteins/metabolism , Animals , Interleukin-8/pharmacology , Male , Mice , Mice, Inbred BALB C , Neutrophils/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...