Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(3): 1987-2026, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38534746

ABSTRACT

Mitochondria are thought to have become incorporated within the eukaryotic cell approximately 2 billion years ago and play a role in a variety of cellular processes, such as energy production, calcium buffering and homeostasis, steroid synthesis, cell growth, and apoptosis, as well as inflammation and ROS production. Considering that mitochondria are involved in a multitude of cellular processes, mitochondrial dysfunction has been shown to play a role within several age-related diseases, including cancers, diabetes (type 2), and neurodegenerative diseases, although the underlying mechanisms are not entirely understood. The significant increase in lifespan and increased incidence of age-related diseases over recent decades has confirmed the necessity to understand the mechanisms by which mitochondrial dysfunction impacts the process of aging and age-related diseases. In this review, we will offer a brief overview of mitochondria, along with structure and function of this important organelle. We will then discuss the cause and consequence of mitochondrial dysfunction in the aging process, with a particular focus on its role in inflammation, cognitive decline, and neurodegenerative diseases, such as Huntington's disease, Parkinson's disease, and Alzheimer's disease. We will offer insight into therapies and interventions currently used to preserve or restore mitochondrial functioning during aging and neurodegeneration.

2.
Front Behav Neurosci ; 17: 1182661, 2023.
Article in English | MEDLINE | ID: mdl-37638110

ABSTRACT

Incidence of anxiety-like disorders in humans has been shown to decrease with aging; however, it is still under debate whether there are similarities in mice, which would support the use of mouse models in understanding the neuronal network changes that regulate anxiety-like behavior in aging. One of the most common tests used to assess anxiety-like behavior in laboratory animals is the elevated plus maze (EPM). Although several variables, such as room brightness and width of the maze arms, have been shown to influence the spontaneous animal behavior during the EPM test, none of these variables have ever been evaluated in aging to understand their possible differential effect on younger and older mice. We therefore decided to investigate the effect of apparatus construction on young adult and old mice of both sexes on EPM test performance. Our results show that distance traveled during the test is the variable that is most affected by apparatus characteristics independent of age and sex. We also found that apparatus construction was key in demonstrating that old mice spent more time and had relatively more entries in the open arms as compared to young mice, suggesting a decrease in anxiety-like behavior with age. Taken together, our data demonstrate that EPM apparatus characteristics dramatically affect test outcome with a wider arm apparatus being more effective in revealing age-dependent changes in anxiety-like behavior, thus, suggesting the use of a wider arm EPM when conducting aging studies in mice.

3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37569681

ABSTRACT

Environmental pollutants have become quite ubiquitous over the past two centuries; of those, plastics, and in particular, microplastics (<5 mm), are among the most pervasive pollutants. Microplastics (MPs) have found their way into the air, water system, and food chain and are either purposely produced or are derived from the breakdown of larger plastic materials. Despite the societal advancements that plastics have allowed, the mismanagement of plastic waste has become a pressing global issue. Pioneering studies on MPs toxicity have shown that exposure to MPs induces oxidative stress, inflammation, and decreased cell viability in marine organisms. Current research suggests that these MPs are transported throughout the environment and can accumulate in human tissues; however, research on the health effects of MPs, especially in mammals, is still very limited. This has led our group to explore the biological and cognitive consequences of exposure to MPs in a rodent model. Following a three-week exposure to water treated with fluorescently-labeled pristine polystyrene MPs, young and old C57BL/6J mice were assessed using behavioral assays, such as open-field and light-dark preference, followed by tissue analyses using fluorescent immunohistochemistry, Western blot, and qPCR. Data from these assays suggest that short-term exposure to MPs induces both behavioral changes as well as alterations in immune markers in liver and brain tissues. Additionally, we noted that these changes differed depending on age, indicating a possible age-dependent effect. These findings suggest the need for further research to better understand the mechanisms by which microplastics may induce physiological and cognitive changes.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Humans , Mice , Microplastics/toxicity , Plastics/toxicity , Mice, Inbred C57BL , Polystyrenes/toxicity , Environmental Pollutants/analysis , Inflammation/chemically induced , Water , Water Pollutants, Chemical/chemistry , Mammals
4.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409283

ABSTRACT

Late-onset Alzheimer's disease (LOAD) likely results from combinations of risk factors that include both genetic predisposition and modifiable lifestyle factors. The E4 allele of apolipoprotein E (ApoE) is the most significant genetic risk factor for LOAD. A Western-pattern diet (WD) has been shown to strongly increase the risk of cardiovascular disease and diabetes, conditions which have been strongly linked to an increased risk for developing AD. Little is known about how the WD may contribute to, or enhance, the increased risk presented by possession of the ApoE4 allele. To model this interaction over the course of a lifetime, we exposed male and female homozygote ApoE4 knock-in mice and wild-type controls to nine months of a high-fat WD or standard chow diet. At eleven months of age, the mice were tested for glucose tolerance and then for general activity and spatial learning and memory. Postmortem analysis of liver function and neuroinflammation in the brain was also assessed. Our results suggest that behavior impairments resulted from the convergence of interacting metabolic alterations, made worse in a male ApoE4 mice group who also showed liver dysfunction, leading to a higher level of inflammatory cytokines in the brain. Interestingly, female ApoE4 mice on a WD revealed impairments in spatial learning and memory without the observed liver dysfunction or increase in inflammatory markers in the brain. These results suggest multiple direct and indirect pathways through which ApoE and diet-related factors interact. The striking sex difference in markers of chronic neuroinflammation in male ApoE4 mice fed the high-fat WD suggests a specific mechanism of interaction conferring significant enhanced LOAD risk for humans with the ApoE4 allele, which may differ between sexes. Additionally, our results suggest researchers exercise caution when designing and interpreting results of experiments employing a WD, being careful not to assume a WD impacts both sexes by the same mechanisms.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Alzheimer Disease/genetics , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Diet, High-Fat/adverse effects , Female , Male , Mice , Mice, Transgenic , Neuroinflammatory Diseases , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...