Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 9(1): 18430, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804521

ABSTRACT

The Early Jurassic (late Pliensbachian to early Toarcian) was a period marked by extinctions, climate fluctuations, and oceanic anoxia. Although the causes of the early Toarcian Oceanic Anoxia Event (OAE) have been fairly well studied, the events that lead to the Toarcian OAE, i.e. the events in the late Pliensbachian, have not been well constrained. Scenarios of the driving mechanism of biotic and environmental changes of the late Pliensbachian have ranged from LIP volcanism (the Karoo-Ferrar LIP), ocean stagnation, and changing ocean circulation, to orbital forcing. The temporal relationship between the Karoo LIP and the late Pliensbachian (Kunae-Carlottense ammonite Zones) are investigated in an effort to evaluate a causal relationship. We present the first absolute timescale on the Kunae and Carlottense Zones based on precise high-precision U-Pb geochronology, and additional geochemical proxies, for a range of environmental proxies such as bulk organic carbon isotope compositions, Hg concentration, and Hg/TOC ratios, and Re-Os isotopes to further explore their causal relationship. The data presented here show that causality between the Karoo LIP and the late Pliensbachian events cannot be maintained.

3.
Sci Rep ; 6: 23168, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009463

ABSTRACT

The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.


Subject(s)
Carbon/analysis , Geologic Sediments/analysis , Oxygen/analysis , Climate , Extinction, Biological , Greenhouse Effect , Temperature
4.
Geodiversitas ; 38(3): 341-353, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28255262

ABSTRACT

A new set of Paleocene and Eocene decapod crustaceans is described from the Kirthar Range of Pakistan. Two new ghost shrimps (Crustacea, Decapoda, Callianassidae) are described: Neocallichirus khadroensis Hyzný & Charbonnier, n. sp. from the Paleocene (Danian, Khadro Formation) of Gawar Band, Ranikot District, and Neocallichirus lakhraensis Hyzný & Charbonnier, n. sp. from the Early Eocene (Ypresian, Lakhra Formation) of Rbod Nala, Jhirak District. Both new species exhibit chelipeds which are morphologically surprisingly close to extant Neocallichirus karumba (Poore & Griffin, 1979) from the Indo-West Pacific. A group of species sharing this same cheliped morphology is provisionally called the "karumba group" based on Neocallichirus karumba, best documented species. The "karumba group" encompasses seven fossil species: the two new Pakistani species, Neocallichirus tuberculatus (Lorenthey in Lorenthey & Beurlen, 1929) n. comb. from the Eocene of Hungary, Neocallichirus borensis Beschin, De Angeli, Checchi & Mietto, 2006 from the Eocene of Italy, Neocallichirus birmanicus (Noetling, 1901) n. comb. from the Miocene of Myanmar, Neocallichirus dijki (Martin, 1883) from the Miocene of Java and Philippines, and the subfossil Neocallichirus maximus (A. Milne-Edwards, 1870) from Thailand. Based upon the extant and fossil occurrences, it is difficult to reconstruct migration pattern of the "karumba group". For now, it can be concluded, that at the genus level, a relative homogeneity of the ghost shrimps is observed between the Eastern and the Western Tethyan regions, as already suggested by Merle et al. (2014) for the assemblage of volutid gastropods from the Lakhra Formation.

5.
Zootaxa ; 3826(1): 101-38, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24990040

ABSTRACT

The paleobiodiversity of the Volutidae (Mollusca: Gastropoda) of the Ranikot Group (Sindh, Pakistan) and particularly of the Lakhra Formation (SBZ 5 biozone, Earliest Eocene), is reconsidered on the basis of new material collected during recent field trips. Ten new species are described (Mitreola brohii sp. nov., Lyrischapa vredenburgi sp. nov., L. brevispira sp. nov., Athleta (Volutopupa) citharopsis sp. nov., A. (Volutocorbis) lasharii sp. nov., Volutilithes welcommei sp. nov., V. sindhiensis sp. nov., Pseudaulicina coxi sp. nov., Sindhiluta lakhraensis sp. nov. and Pakiluta solangii sp. nov.) and one species is in open nomenclature (Lyria sp.). Three new genera are described: Lyriopsis gen. nov. [Volutinae, ?Lyriini, type species: Lyriopsis cossmanni (Vredenburg, 1923)], Sindhiluta gen. nov. [Volutilithinae, type species: Sindhiluta lakhraensis n. sp.] and Pakiluta gen. nov. [?Volutodermatinae, type species: Pakiluta solangii n. sp.]. Two new combinations are proposed: Lyriopsis cossmanni (Vredenburg, 1923) comb. nov. and Athleta (Volutopupa) intercrenatus (Cossmann & Pissarro, 1909) comb. nov. Lectotypes are designated for Lyria cossmanni Vredenburg, 1923, L. feddeni Vredenburg, 1923, Volutospina noetlingi Cossmann & Pissarro, 1909, V. intercrenata Cossmann & Pissarro, 1909 and Athleta (Volutocorbis) victoriae Vredenburg, 1923. With 21 species, this volutid fauna is the most diverse recorded from the Tethys Ocean during Earliest Eocene time. The assemblage is characterized by a strong turnover marked by regional speciation and the appearance of many western Tethyan invaders. Although at the species level, the assemblage documents a strong provincialism, at the genus level, the high number of shared genera between Eastern Tethyan and Old World Tethyan realms begins a phase of long-term homogeneity of volutid assemblages from the Tethyan paleobiogeographic province.


Subject(s)
Fossils , Gastropoda/anatomy & histology , Gastropoda/classification , Animals , Geologic Sediments , Pakistan , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL
...