Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37896387

ABSTRACT

A new set of microporous organic polymers (POPs) containing diphosphine derivatives synthesized by knitting via Friedel-Crafts has been attained. These amorphous three-dimensional materials have been prepared by utilizing diphosphines, 1,3,5-triphenylbenzene, and biphenyl as nucleophile aromatic groups, dimethoxymethane as the electrophilic linker, and FeCl3 as a promoting catalyst. These polymer networks display moderate thermal stability and high microporosity, boasting BET surface areas above 760 m2/g. They are capable of coordinating with palladium acetate, using the phosphine derivative as an anchoring center, and have proven to be highly efficient catalysts in Suzuki-Miyaura coupling reactions involving bromo- and chloroarenes under environmentally friendly (using water and ethanol as solvents) and aerobic conditions. These supported catalysts have achieved excellent turnover numbers (TON) and turnover frequencies (TOF), while maintaining good recyclability without significant loss of activity or Pd leaching after five consecutive reaction cycles.

2.
Chem Commun (Camb) ; 59(14): 1975-1978, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36727423

ABSTRACT

19F NMR monitoring shows that heating trans-[AuIIIRf2I2]- solutions (Rf = C6F3Cl2-3,5) leads to formation of cis-[AuRf2I2]-, [AuRf3I]- and [AuRfI3]-via kinetic competition between isomerization and Rf/I scrambling. The system evolution is driven by the easy Rf-I reductive elimination from [AuRfI3]- (forming also [AuI2]-), which is faster than any of the Rf-Rf couplings from the coexisting species, hindering the commonly desired and thermodynamically preferred C-C coupling. A kinetic model where I- dissociation triggers both isomerization and transmetalation steps is proposed, which fits well the experimental data. DFT calculations support that the lower bond strength of AuIII-I compared to other halides produces a pathway switch that makes C-I coupling kinetically preferred. Consequently, it is better avoided in reactions looking for C-C coupling.

3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769053

ABSTRACT

By employing a variation of the polyamidation method using in situ silylated diamines and acid chlorides, it was possible to obtain a rod-type polyamide: poly(p-phenylene terephthalamide) (PPTA, a polymer used in the high-value-added material Kevlar), with a molecular weight much higher than that obtained with the classical and industrial polyamidation method. The optimization of the method has consisted of using, together with the silylating agent, a mixture of pyridine and a high-pKa tertiary amine. The research was complemented by a combination of nuclear magnetic resonance and molecular simulation studies, which determined that the improvements in molecular weight derive mainly from the formation of silylamide groups in the growing polymer.


Subject(s)
Nylons , Polymers , Molecular Weight , Magnetic Resonance Spectroscopy , Diamines
4.
Inorg Chem ; 60(18): 14410-14417, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34498456

ABSTRACT

Analysis of the bonding contributions in molecules [MIIICp*(L)XY] (M = Rh, Ir; Cp* = C5Me5; L = CO, CN-, CNR) has uncovered a rich variety of types of interaction that seem to have escaped detection so far, in spite of the continuous popularity of cyclopentadienyl transition-metal complexes since the 1970s. At variance with the M-C≡O bond in square-planar systems, which shows typical metal-to-CO π-back-donation, the nonorthogonal arrangement of the Cp* plane and Rh-C≡O fragment and the pseudooctahedral geometry lead to the observation of many direct lateral donations from other ligands that do not involve the metal orbitals, and we name side donations, for instance, Cp* → π*(CO), Cl → π*(CO), and F → π*(CO). Hybrid donations partially involving the metal, M-Caryl → π*(CO), are also observed. The summation of multiple contributions other than back-donation can easily account for about 20% of the electron donation to the π*(C≡O) orbitals.

5.
Chem Commun (Camb) ; 57(1): 125-128, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33295338

ABSTRACT

Aryl rearrangements triggered by Cl- extraction from trans-[AuIII(Rf)2Cl2]- (Rf = C6F3Cl2-3,5), led quickly to a mixture of [Au(Rf)3(solv)], cis-[Au(Rf)2Cl(solv)] and [Au(Rf)Cl2(solv)] (solv = OEt2, OH2). 19F NMR and X-ray diffraction studies led us to identify the species present in solution and the role of the solvent in their formation, while DFT calculations confirm the thermodynamic basis of their evolution. Very different Rf-Rf coupling rates are found from (µ-Cl)2[cis-Au(Rf)2]2 or cis-[Au(Rf)2ClL] species (L = OEt2, NCMe, Cl-) depending on the coordination strength of the ligand or solvent in the fourth position.

6.
Angew Chem Int Ed Engl ; 58(11): 3501-3505, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30604459

ABSTRACT

By combining kinetic experiments, theoretical calculations, and microkinetic modeling, we show that Pf/Rf (C6 F5 /C6 Cl2 F3 ) exchange between [AuPf(AsPh3 )] and trans-[RhRf(CO)(AsPh3 )2 ] does not occur by typical concerted Pf/Rf transmetalation via electron-deficient double bridges. Instead, it involves asymmetric oxidative insertion of the RhI complex into the (Ph3 As)Au-Pf bond to produce a [(Ph3 As)Au-RhPfRf(CO)(AsPh3 )2 ] intermediate, followed by isomerization and reductive elimination of [AuRf(AsPh3 )]. Interesting differences were found between the LAu-Ar asymmetric oxidative insertion and the classical oxidative addition process of H2 to Vaska complexes.

7.
ACS Appl Mater Interfaces ; 10(31): 26195-26205, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30001102

ABSTRACT

A new generation of porous polymer networks has been obtained in quantitative yield by reacting two rigid trifunctional aromatic monomers (1,3,5-triphenylbenzene and triptycene) with two ketones having electron-withdrawing groups (trifluoroacetophenone and isatin) in superacidic media. The resulting amorphous networks are microporous materials, with moderate Brunauer-Emmett-Teller surface areas (from 580 to 790 m2 g-1), and have high thermal stability. In particular, isatin yields networks with a very high narrow microporosity contribution, 82% for triptycene and 64% for 1,3,5-triphenylbenzene. The existence of favorable interactions between lactams and CO2 molecules has been stated. The materials show excellent CO2 uptakes (up to 207 mg g-1 at 0 °C/1 bar) and can be regenerated by vacuum, without heating. Under postcombustion conditions, their CO2/N2 selectivities are comparable to those of other organic porous networks. Because of the easily scalable synthetic method and their favorable characteristics, these materials are very promising as industrial adsorbents.

8.
Chemistry ; 19(11): 3702-9, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23371865

ABSTRACT

The X-ray structure of the title compound [Pd(Fmes)2 (tmeda)] (Fmes=2,4,6-tris(trifluoromethyl)phenyl; tmeda=N,N,N',N'-tetramethylethylenediamine) shows the existence of uncommon CH⋅⋅⋅FC hydrogen-bond interactions between methyl groups of the TMEDA ligand and ortho-CF3 groups of the Fmes ligand. The (19) F NMR spectra in CD2 Cl2 at very low temperature (157 K) detect restricted rotation for the two ortho-CF3 groups involved in hydrogen bonding, which might suggest that the hydrogen bond is responsible for this hindrance to rotation. However, a theoretical study of the hydrogen-bond energy shows that it is too weak (about 7 kJ mol(-1) ) to account for the rotational barrier observed (ΔH(≠) =26.8 kJ mol(-1) ), and it is the steric hindrance associated with the puckering of the TMEDA ligand that should be held responsible for most of the rotational barrier. At higher temperatures the rotation becomes fast, which requires that the hydrogen bond is continuously being split up and restored and exists only intermittently, following the pulse of the conformational changes of TMEDA.


Subject(s)
Coordination Complexes/chemistry , Organometallic Compounds/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Solutions
9.
Inorg Chem ; 49(21): 9758-64, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20614913

ABSTRACT

Mononuclear and dinuclear chiral gold(I) carbene complexes with carbene ligands of the type HBHC (hydrogen bonded heterocyclic carbenes) and NAC (nitrogen acyclic carbenes) have been prepared by reaction of isocyanide gold(I) complexes and chiral amines or diamines. The reaction of [AuCl(CNPy-2)] (1) (Py = pyridyl) with the corresponding chiral primary amines afforded the chiral HBHC complexes (R)-[AuCl{C(NH(CHMePh))(NHPy-2)}] ((R)-2), and (S)-[AuCl{C(NH{CHMe(1-naphthyl)})(NHPy-2)}] ((S)-3), while the reaction of 2 equiv of 1 with diamines produced (S)-2,2'-bis[NH{C(AuCl)(NHPy-2)}](2)-binaphthyl ((S)-4), (1R,2R)-1,2-bis[NH{C(AuCl)(NHPy-2)}]-diphenylethane ((1R,2R)-5), and (1R,2R)-1,2-bis[NH{C(AuCl)(NHPy-2)}]-cyclohexane ((1R,2R)-6). On the other hand the addition of alkyl amines to (S)-2,2'-[NCAuCl](2)-binaphthyl ((S)-8) gave the chiral NAC complexes (S)-2,2'-bis[NH{C(AuCl)(NMe(2))}](2)-binaphthyl ((S)-9) and (S)-2,2'-bis[NH{C(AuCl)(N(i)Pr(2))}](2)-binaphthyl ((S)-10), while the addition to (S)-2,2'-[NCAuCl](2)-3,3'-Ph(2)-binaphthyl ((S)-12) yielded (S)-2,2'-bis[NH{C(AuCl)(NMe(2))}](2)-3,3'-Ph(2)-binaphthyl ((S)-13) and (S)-2,2'-bis[NH{C(AuCl)(NEt(2))}](2)-3,3'-Ph(2)-binaphthyl ((S)-14). All the complexes are active catalysts in the cyclopropanation of vinyl arenes and in the intramolecular hydroalkoxylation of allenes, providing good yields and modest or poor enantioselectivity. The results show that all these ligands are compatible with different functions and reaction conditions and are worth considering as alternative systems to NHCs or phosphines in gold catalyzed reactions.


Subject(s)
Alkadienes/chemistry , Cyclopropanes/chemistry , Heterocyclic Compounds/chemistry , Methane/analogs & derivatives , Organogold Compounds/chemistry , Organogold Compounds/chemical synthesis , Catalysis , Crystallography, X-Ray , Gold/chemistry , Hydrogen Bonding , Methane/chemistry , Models, Molecular , Molecular Structure , Nitrogen/chemistry , Stereoisomerism
10.
Inorg Chem ; 47(23): 11391-7, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18947178

ABSTRACT

Complexes [AuCl{C(NHR)(NHPy-2)}] (Py-2 ) 2-pyridyl; R ) Me, tBu, nBu, iPr, nheptyl) have been prepared in amodular way from [AuCl(CNPy-2)]. The carbene moiety has a hydrogen-bond supported heterocyclic structure similar to the nitrogen heterocyclic carbenes in the solid state, and in CH2Cl2 or acetone solution, which is open in the presence of MeOH. The compounds are good catalysts for the skeletal rearrangement of enynes, and for the methoxycyclization of enynes. In contrast, the complexes [AuCl{C(NHR)(NHPy-4)}] are scarcely active due to the blocking effect of the coordination position required for the catalysis by the nitrogen of the NHPy-4 group.

11.
Inorg Chem ; 47(5): 1616-24, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18237121

ABSTRACT

Isocyanide [AuX(CNPy-2)] (X = Cl, C6F5, fluoromesityl, 1/2 octafluorobiphenyl) and carbene [AuX{C(NR1R2)(NHPy-2)}] (R1R2NH = primary or secondary amines or 1/2 primary diamine) gold(I) complexes have been synthesized and characterized. For X = Cl, the carbene complexes show aurophilic interactions. The fragment NHPy-2, formed in the carbenes, can give rise to intra- (for primary amines) or intermolecular (for secondary amines) hydrogen bonds, depending on the amine used. These bonds and contacts have been studied in the solid state and in solution. The intermolecular hydrogen bonds are split in an acetone solution, but the intramolecular ones, which close a six-membered ring, survive in solution. Except for the fluoromesityl derivatives, the carbene complexes display luminescent properties.

12.
Chem Commun (Camb) ; (42): 4384-6, 2007 Nov 14.
Article in English | MEDLINE | ID: mdl-17957294

ABSTRACT

The reinvestigation of the title compounds, which are the only examples reported to show experimentally (by NMR) O-H...F-C bonds in solution proves that the NMR data were misinterpreted and the restrictions to rotation of one CF(3) group are due to crowding, not to intramolecular O-H...F-C bond.


Subject(s)
Fluorine/chemistry , Hydrogen/chemistry , Oxygen/chemistry , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Molecular , Solutions , Stereoisomerism , X-Ray Diffraction
13.
Dalton Trans ; (45): 5339-45, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-18271491

ABSTRACT

Monomeric gold(I) carbenes of the type [AuR[C(NR1R2)(NHPy-4)]] (Py-4 = 4-pyridyl) have been prepared with R = C6F5, Fmes (2,4,6-tris(trifluoromethyl)phenyl) by reaction of the corresponding isocyanide compounds [AuR(CNPy-4)] with primary or secondary amines. The single crystal X-ray diffraction structures of [Au(C6F5)[C(NEt2)(NHPy-4)]].OH2, [Au(Fmes)[C(NEt2)(NHPy-4)]], and [Au(Fmes)[C(NHMe)(NHPy-4)]] show that the presence of the NHPy-4 moiety formed induces the formation of supramolecular macrocycles only supported by hydrogen bond interactions, either with N-H groups of other molecules (tetrameric macrocycles), or with water molecules (dimeric macrocycles). Dimeric gold(I) carbenes were also produced using a diamine to form a bridging carbene, or using octafluorobiphenyl to form a Au-C6F4-C6F4-Au bridge, but the solid state structures of these dimers could not be solved. Most of the complexes herein described display luminescent properties.

15.
Angew Chem Int Ed Engl ; 40(13): 2521-2524, 2001 Jul 02.
Article in English | MEDLINE | ID: mdl-29712289

ABSTRACT

Halide ions act as the template for the self-assembly of tetrapalladium macrocyclic pyramidal structures. These undergo easy inversion in which the halide ion apparently jumps across the macrocycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...