Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 332: 117392, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36739772

ABSTRACT

Hydrologic monitoring began on two headwater streams (<1 km2) on the University of Kentucky's Robinson Forest in 1971. We evaluated stream-water (1974-2013) and bulk-deposition (wet + dust) (1984-2013) chemistry in the context of regional wet-deposition patterns that showed decreases in both sulfate and nitrate concentrations as well as proximal surface-mine expansion. Decadal time steps (1974-83, 1984-93, 1994-2003, 2004-2013) were used to quantify change. Comparison of the first two decades showed similarly decreased sulfate (minimum flow-adjusted annual-mean concentration of ≈13.5 mg/L in 1982 to 8.8 mg/L in 1992) and increased pH (6.6-6.8) in both streams, reflecting contemporaneous changes in both bulk and wet deposition. In contrast, concentrations of nitrate (0.14 to >0.25 mg/L) and base cations increased between these two decades, coinciding with expansion of surface mining between 1985 and 1995. In 2004, stream-water pH (6.7 in 2004), sulfate (9.2 mg/L), and nitrate (>0.11 mg/L) were similar to 1982, despite wet-deposition concentrations being lower. Base-cation concentrations were higher in the stream adjacent to ongoing surface mining relative to the stream situated near the middle of the experimental forest. However, pH decreased to approximately 5.7 by 2013 for both streams, which, combined with a shift in dominant cations from calcium to magnesium and potassium, indicates that the soil-buffering capacity of this landscape has been exceeded. Ratios of bulk deposition and stream-water concentrations indicate enrichment of sulfate (1.7-25.2) and cations (0.5-64.8), but not nitrogen (0.1-5.6), indicating that the Forest is not nitrogen saturated and that ongoing changes in water-quality are sulfate driven. When concentrations were adjusted to account for changes in streamflow (climate) over the 4 decades, external influences (land management/regulation) explained most change. The amount and direction of change differed among constituents, both between consecutive decades and between the first and last decades, reflecting the influence of localized surface mining even as regional wet deposition continued to improve due to the Clean Air Act. The implication is that localized stressors have the potential to out-pace the benefits of national environmental policies for communities that depend on local water-resources in similar environments.


Subject(s)
Rivers , Water , Nitrates/analysis , Forests , Organic Chemicals , Appalachian Region , Sulfates/analysis , Cations , Environmental Monitoring
2.
Sci Total Environ ; 743: 140605, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758820

ABSTRACT

Forests in the Appalachian region of the U.S. are threatened by a variety of short- and long-term pressures, including climate change, invasive species, and resource extraction. Surface mining for coal is one of the most important drivers of land-use change in the region, reducing native forest cover, causing forest fragmentation, eliminating intact soil, and affecting water resources. The Forestry Reclamation Approach (FRA) has been demonstrated as a successful best practice for restoring forests on mine-impacted landscapes, but little information exists on how the practice will affect hydrologic processes. A study was initiated to examine soil-water movement, as in-situ saturated hydraulic conductivity (Ksat), combined with soil porosity to quantify the potential influence on streamflow of reclaimed mines relative to an unmined, forested control site in eastern Kentucky. We compared different reclamation techniques and time since reclamation to determine the extent to which hydrologic function can be restored. We also simulated evapotranspiration at the watershed scale as a function of reclamation technique for both historical and projected (2050) climate. Results indicate that conventional grassland reclamation critically changes how soil water transitions to streamflow, primarily due to Ksat variability that exceeds that measured for intact and FRA soils. Sites reclaimed using FRA exhibited a soil-water environment that was more similar to the unmined control. However, all reclaimed mine soils were thinner, retained and stored less soil water, and thus could provide less plant-available water during the growing season. The plant-available water stored in reclaimed landscapes may not be sufficient to support forest health and this is exacerbated by projected climate conditions. However, soil development under a combination of FRA techniques has the potential to mitigate this limitation.

3.
Environ Toxicol Chem ; 38(1): 115-131, 2019 01.
Article in English | MEDLINE | ID: mdl-30284320

ABSTRACT

Extensive industrial areas in headwater stream watersheds can severely impact the physical condition of streams and introduce contaminants. We compared 3 streams that received stormwater runoff and industrial effluents from industrial complexes to 2 reference streams. Reference streams provide a benchmark of comparison of geomorphic form and stability in coastal plain, sandy-bottomed streams as well as concentrations of trace elements in sediment and biota in the absence of industrial disturbance. We used crayfish (Cambarus latimanus, Procambarus raneyi, Procambarus acutus) and crane fly larvae (Tipula) as biomonitors of 15 trace elements entering aquatic food webs. Streams with industrial areas were more scoured, deeply incised, and less stable. Sediment organic matter content broadly correlated to trace element accumulation, but fine sediments and organic matter were scoured from the bottoms of disturbed streams. Trace element concentrations were higher in depositional zones than runs within all streams. Despite contaminant sources in the headwaters, trace element concentrations were generally not elevated in sediments of the eroded streams. However, element concentrations were frequently elevated in biota from these streams with taxonomic differences in accumulation amplified. In eroded, sand-bottomed coastal plain streams with unstable sediments, single snapshots of sediment trace element concentrations did not characterize well bioavailable trace elements. Biota that integrated exposures over time and space within their home ranges better detected bioavailable contaminants than sediment. Environ Toxicol Chem 2019;38:115-131. © 2018 SETAC.


Subject(s)
Biota , Geologic Sediments/chemistry , Industry , Rivers/chemistry , Trace Elements/analysis , Animals , Clay , Environmental Monitoring , Geography , Organic Chemicals/analysis , Principal Component Analysis , Species Specificity , Water Pollutants, Chemical
4.
J Environ Qual ; 41(2): 454-68, 2012.
Article in English | MEDLINE | ID: mdl-22370409

ABSTRACT

Surface mining is a common method for extracting coal in the coal fields of eastern Kentucky. Using the Forestry Reclamation Approach (FRA), which emphasizes the use of minimally compacted or loose-dumped spoil as a growth medium for trees, reclamation practitioners are successfully reestablishing forests. Yet, questions remain regarding the effects FRA has on the quality of waters discharged to receiving streams. To examine the effect of FRA on water quality, this study compared waters that were discharged from three types of spoils: predominantly brown, weathered sandstone (BROWN); predominantly gray, unweathered sandstone (GRAY); and an equal mixture of both aforementioned sandstones and shale (MIXED). The water quality parameters pH, EC, Ca, K, Mg, Na, NO-N, NH-N, SO, Cl, TC, suspended sediment concentration (SSC), settleable solids (SS), and turbidity were monitored over a 2-yr period on six 0.4-ha plots (two replications per spoil type). Generally, levels of Cl, SO, Ca, NO-N, NH-N, SS, SSC, and turbidity decreased over time. The pH for all spoils increased from about 7.5 to 8.5. The EC remained relatively level in the BROWN spoil, whereas the GRAY and MIXED spoils had downward trajectories that were approaching 500 µS cm. The value of 500 µS cm has been reported as the apparent threshold at which certain taxa such as Ephemeroptera (e.g., Mayfly) recolonize disturbed headwater streams of eastern Kentucky and adjacent coal-producing Appalachian states.


Subject(s)
Industrial Waste/analysis , Mining , Trees , Water Quality , Electric Conductivity , Hydrogen-Ion Concentration , Industrial Waste/adverse effects , Kentucky , Trees/drug effects , Trees/growth & development , Water/chemistry
5.
Environ Manage ; 47(5): 751-65, 2011 May.
Article in English | MEDLINE | ID: mdl-21479921

ABSTRACT

Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.


Subject(s)
Coal Mining , Conservation of Natural Resources/methods , Ecosystem , Appalachian Region
SELECTION OF CITATIONS
SEARCH DETAIL
...