Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 155(8): 084801, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34470363

ABSTRACT

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

2.
Nat Commun ; 12(1): 3927, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168142

ABSTRACT

Quantum-mechanical methods are used for understanding molecular interactions throughout the natural sciences. Quantum diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] are state-of-the-art trusted wavefunction methods that have been shown to yield accurate interaction energies for small organic molecules. These methods provide valuable reference information for widely-used semi-empirical and machine learning potentials, especially where experimental information is scarce. However, agreement for systems beyond small molecules is a crucial remaining milestone for cementing the benchmark accuracy of these methods. We show that CCSD(T) and DMC interaction energies are not consistent for a set of polarizable supramolecules. Whilst there is agreement for some of the complexes, in a few key systems disagreements of up to 8 kcal mol-1 remain. These findings thus indicate that more caution is required when aiming at reproducible non-covalent interactions between extended molecules.


Subject(s)
Models, Chemical , Benchmarking , Benzene/chemistry , Databases, Chemical , Diffusion , Hydrogen Bonding , Monte Carlo Method , Pyridines/chemistry , Quantum Theory , Static Electricity , Uracil/chemistry , Water/chemistry
3.
Chem Commun (Camb) ; 55(77): 11611-11614, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31498359

ABSTRACT

The on-surface dimerization reaction of an organic nitrile on Au(111) is reported. The formation of the product, which contains five newly formed σ-bonds and a diazapyrene core structure, was investigated and characterized by scanning tunneling microscopy. Experimental and computational studies of reference compounds support our findings.

4.
Chemistry ; 24(57): 15303-15308, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30079553

ABSTRACT

This work reports the influence of molecular coverage in on-surface C-C-bond formation on reaction outcome. 6-Ethynyl-2-naphthoic acid (ENA) was chosen as organic component and Ag(111) as substrate. The alkyne moiety in ENA can either react by dimerization to ENA dimers (Glaser coupling or hydroalkynylation) or cyclotrimerization to generate a benzene core as connecting moiety. Dimer formation is preferred at high surface coverage whereas trimerization is the major reaction pathway at low coverage. Mechanistic studies are provided.

5.
J Am Chem Soc ; 140(18): 6000-6005, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29627973

ABSTRACT

Polymerization of a biphenyl bis α-diazo ketone on Cu(111) and Au(111) surfaces to provide furandiyl bridged poly-para-phenylenes is reported. Polymerization on Cu(111) occurs via initial N2 fragmentation leading to Cu-biscarbene complexes at room temperature as polymeric organometallic structure. At 135 °C, carbene coupling affords polymeric α,ß-unsaturated 1,4-diketones, while analogous alkene formation on the Au(111) surface occurs at room temperature. Further temperature increase leads to deoxygenative cyclization of the 1,4-diketone moieties to provide alternating furandiyl biphenyl copolymers on Cu(111) (165 °C) and Au(111) (240 °C) surfaces. This work shows a new approach to generate Cu-biscarbene intermediates on surfaces, opening the pathway for the controlled generation of biphenyl copolymers.

6.
J Comput Chem ; 39(13): 788-798, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29322533

ABSTRACT

We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc.

7.
Chemistry ; 23(25): 6190-6197, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28211966

ABSTRACT

Possible origins of the formation of organometallic intermediates in on-surface Ullmann couplings have been investigated by surface tunneling microscopy (STM) and density functional theory (DFT) calculations. We consider the case of iodobenzenes on the coinage metals copper, silver, and gold. We found experimental evidence for the formation of surface vacancies and the presence of metal adatoms in these coupling reactions, which are taken as a hint for the reactive extraction of surface atoms by adsorbates. In a second step, we demonstrate by ab initio molecular dynamics calculations for aryl-iodides on copper that metal atoms can be pulled out of the surface to form metal-organic species. By contrast, a thermally activated provision of a metal atom from the surface to form an adatom is energetically unfavorable. Finally, we investigate the mechanism and energetics of the reactive extraction of surface metal atoms by means of (climbing-image) nudged elastic band density-functional theory calculations for iodobenzene on copper, silver, and gold, and analyze our results in the light of the experimental findings.

8.
Angew Chem Int Ed Engl ; 55(33): 9777-82, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27410485

ABSTRACT

Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100 nm was prepared. It is shown that the monomer BDNA can be prepared in situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks.

9.
J Chem Phys ; 141(16): 164115, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362280

ABSTRACT

The vibrational coarse structure and the band shapes of electronic absorption spectra are often dominated by just a few molecular vibrations. By contrast, the simulation of the vibronic structure even in the simplest theoretical models usually requires the calculation of the entire set of normal modes of vibration. Here, we exploit the idea of the mode-tracking protocol [M. Reiher and J. Neugebauer, J. Chem. Phys. 118, 1634 (2003)] in order to directly target and selectively calculate those normal modes which have the largest effect on the vibronic band shape for a certain electronic excitation. This is achieved by defining a criterion for the importance of a normal mode to the vibrational progressions in the absorption band within the so-called "independent mode, displaced harmonic oscillator" (IMDHO) model. We use this approach for a vibronic-structure investigation for several small test molecules as well as for a comparison of the vibronic absorption spectra of a truncated chlorophyll a model and the full chlorophyll a molecule. We show that the method allows to go beyond the often-used strategy to simulate absorption spectra based on broadened vertical excitation peaks with just a minimum of computational effort, which in case of chlorophyll a corresponds to about 10% of the cost for a full simulation within the IMDHO approach.

10.
Plant Mol Biol ; 69(5): 565-75, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19082744

ABSTRACT

Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae.


Subject(s)
Brassicaceae/enzymology , Brassicaceae/genetics , Fatty Acids, Monounsaturated/metabolism , Genes, Plant , Saccharomyces cerevisiae/metabolism , Transformation, Genetic , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Acetyltransferases/metabolism , Arabidopsis/genetics , Blotting, Northern , Chromatography, Gas , Cloning, Molecular , Esters/analysis , Fatty Acid Elongases , Fatty Acids/analysis , Gene Expression Regulation, Plant , Plant Oils/chemistry , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/growth & development , Sequence Homology, Nucleic Acid
11.
Plant Biotechnol J ; 6(8): 799-818, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18631243

ABSTRACT

SUMMARY: A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Tropaeolum majus (garden nasturtium). The 1557-bp open reading frame of this cDNA, designated TmDGAT1, encodes a protein of 518 amino acids showing high homology to other plant DGAT1s. The TmDGAT1 gene was expressed exclusively in developing seeds. Expression of recombinant TmDGAT1 in the yeast H1246MATalpha quadruple mutant (DGA1, LRO1, ARE1, ARE2) restored the capability of the mutant host to produce triacylglycerols (TAGs). The recombinant TmDGAT1 protein was capable of utilizing a range of (14)C-labelled fatty acyl-CoA donors and diacylglycerol acceptors, and could synthesize (14)C-trierucin. Collectively, these findings confirm that the TmDGAT1 gene encodes an acyl-CoA-dependent DGAT1. In plant transformation studies, seed-specific expression of TmDGAT1 was able to complement the low TAG/unusual fatty acid phenotype of the Arabidopsis AS11 (DGAT1) mutant. Over-expression of TmDGAT1 in wild-type Arabidopsis and high-erucic-acid rapeseed (HEAR) and canola Brassica napus resulted in an increase in oil content (3.5%-10% on a dry weight basis, or a net increase of 11%-30%). Site-directed mutagenesis was conducted on six putative functional regions/motifs of the TmDGAT1 enzyme. Mutagenesis of a serine residue in a putative SnRK1 target site resulted in a 38%-80% increase in DGAT1 activity, and over-expression of the mutated TmDGAT1 in Arabidopsis resulted in a 20%-50% increase in oil content on a per seed basis. Thus, alteration of this putative serine/threonine protein kinase site can be exploited to enhance DGAT1 activity, and expression of mutated DGAT1 can be used to enhance oil content.


Subject(s)
Acyl Coenzyme A/metabolism , Diacylglycerol O-Acyltransferase/genetics , Plant Oils/metabolism , Tropaeolum/enzymology , Tropaeolum/genetics , Amino Acid Motifs , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Erucic Acids , Gene Library , Genes, Plant , Molecular Sequence Data , Mutagenesis, Site-Directed , Plant Proteins/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Recombinant Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Transformation, Genetic , Triglycerides/biosynthesis
12.
Plant Biotechnol J ; 5(5): 636-45, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17565584

ABSTRACT

A genomic fatty acid elongation 1 (FAE1) clone was isolated from Crambe abyssinica. The genomic clone corresponds to a 1521-bp open reading frame, which encodes a protein of 507 amino acids. In yeast cells expression of CrFAE led to production of new very long chain monounsaturated fatty acids such as eicosenoic (20:1(delta11)) and erucic (22:1(delta13)) acids. Seed-specific expression in Arabidopsis thaliana resulted in up to a 12-fold increase in the proportion of erucic acid. On the other hand, in transgenic high-erucic Brassica carinata plants, the proportion of erucic acid was as high as 51.9% in the best transgenic line, a net increase of 40% compared to wild type. These results indicate that the CrFAE gene encodes a condensing enzyme involved in the biosynthesis of very long-chain fatty acids utilizing monounsaturated and saturated acyl substrates, with a strong capability for improving the erucic acid content.


Subject(s)
Acetyltransferases/genetics , Crambe Plant/genetics , Plant Proteins/genetics , Acetyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica/genetics , Brassica/metabolism , Cloning, Molecular , Crambe Plant/enzymology , Crambe Plant/metabolism , DNA, Plant/chemistry , DNA, Plant/genetics , Erucic Acids/metabolism , Fatty Acid Elongases , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Plant Proteins/metabolism , Plants, Genetically Modified , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA
13.
Metab Eng ; 7(3): 215-20, 2005 May.
Article in English | MEDLINE | ID: mdl-15885619

ABSTRACT

Erucic acid and its derivatives represent important industrial feedstock compounds, and there is an increasing demand for the production of high erucate oils in this regard. Our goal therefore, is to develop high erucic acid (HEA) Brassicaceae lines with increased proportions of erucic acid and very long-chain fatty acids (VLCFAs). We proposed that oleate availability may be a rate-limiting factor in the biosynthesis of erucic acid. We have tried to address this question by manipulating the expression of the endogenous FAD2 gene in B. carinata using co-supression and antisense approaches. Both methods resulted in transgenic lines exhibiting decreased proportions of polyunsaturated C18 fatty acids (18:2+18:3) and concomitant and significantly increased proportions of 18:1, 22:1 and total VLCFAs. Co-suppressed FAD2 B. carinata lines exhibited 3-18% decreases in 18:2, 22-49% decreases in 18:3 and significantly increased proportions of 18:1 (36-99%), 22:1 (12-27%) and VLCFAs (6-15%). Transgenic B. carinata lines developed using an antisense FAD2 approach exhibited decreased proportions of 18:2 and 18:3 (9-39% and 33-48%, respectively) and significantly increased proportions of 18:1 (54-130%), 22:1 (5-19%) and VLCFAs (6-21%). The possibility of using these approaches to produce prototype transgenic germplasm of the Brassicaceae accumulating seed oils with improved proportions of erucic and other VLCFAs is discussed.


Subject(s)
Brassica/genetics , Brassica/metabolism , Erucic Acids/metabolism , Fatty Acid Desaturases/deficiency , Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Genetic Enhancement/methods , Protein Engineering/methods , Gene Silencing/physiology , RNA, Antisense/genetics , Suppression, Genetic/genetics
14.
Plant Physiol ; 136(1): 2665-75, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15333757

ABSTRACT

The fatty acid elongase [often designated FAE or beta-(or 3-) ketoacyl-CoA synthase] is a condensing enzyme and is the first component of the elongation complex involved in synthesis of erucic acid (22:1) in seeds of garden nasturtium (Tropaeolum majus). Using a degenerate primers approach, a cDNA of a putative embryo FAE was obtained showing high homology to known plant elongases. This cDNA contains a 1,512-bp open reading frame that encodes a protein of 504 amino acids. A genomic clone of the nasturtium FAE was isolated and sequence analyses indicated the absence of introns. Northern hybridization showed the expression of this nasturtium FAE gene to be restricted to the embryo. Southern hybridization revealed the nasturtium beta-ketoacyl-CoA synthase to be encoded by a small multigene family. To establish the function of the elongase homolog, the cDNA was introduced into two different heterologous chromosomal backgrounds (Arabidopsis and tobacco [Nicotiana tabacum]) under the control of a seed-specific (napin) promoter and the tandem 35S promoter, respectively. Seed-specific expression resulted in up to an 8-fold increase in erucic acid proportions in Arabidopsis seed oil, while constitutive expression in transgenic tobacco tissue resulted in increased proportions of very long chain saturated fatty acids. These results indicate that the nasturtium FAE gene encodes a condensing enzyme involved in the biosynthesis of very long chain fatty acids, utilizing monounsaturated and saturated acyl substrates. Given its strong and unique preference for elongating 20:1-CoA, the utility of the FAE gene product for directing or engineering increased synthesis of erucic acid is discussed.


Subject(s)
Acetyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Erucic Acids/metabolism , Genes, Plant , Nasturtium/enzymology , Nasturtium/genetics , Acetyltransferases/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Base Sequence , DNA, Complementary/genetics , DNA, Plant/genetics , Fatty Acid Elongases , Gene Dosage , Gene Expression , Molecular Sequence Data , Plants, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Seeds/enzymology , Seeds/metabolism , Sequence Homology, Amino Acid , Substrate Specificity , Nicotiana/enzymology , Nicotiana/genetics
15.
FEBS Lett ; 562(1-3): 118-24, 2004 Mar 26.
Article in English | MEDLINE | ID: mdl-15044011

ABSTRACT

To gain some insight whether there is an absolute requirement for the serine 282 to yield a functional fatty acid elongase 1 condensing enzyme we have introduced point mutations in the FAE1 coding sequence which led to the substitution of serine 282 with several aliphatic or aromatic amino acids. The mutated FAE1 polypeptides were expressed in yeast. Gas chromatography analyses of the fatty acid methyl esters from yeast lysates and fatty acid elongase activity assays demonstrated that there is not an absolute requirement for serine at position 282 to yield a functional FAE1 condensing enzyme.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Brassica napus/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Serine/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Brassica napus/genetics , Fatty Acid Elongases , Molecular Structure , Mutagenesis, Site-Directed
16.
Eur J Biochem ; 269(22): 5625-31, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12423362

ABSTRACT

Genomic fatty acid elongation 1 (FAE1) clones from high erucic acid (HEA) Brassica napus, Brassica rapa and Brassica oleracea, and low erucic acid (LEA) B. napus cv. Westar, were amplified by PCR and expressed in yeast cells under the control of the strong galactose-inducible promoter. As expected, yeast cells expressing the FAE1 genes from HEA Brassica spp. synthesized very long chain monounsaturated fatty acids that are not normally found in yeast, while fatty acid profiles of yeast cells expressing the FAE1 gene from LEA B. napus were identical to control yeast samples. In agreement with published findings regarding different HEA and LEA B. napus cultivars, comparison of FAE1 protein sequences from HEA and LEA Brassicaceae revealed one crucial amino acid difference: the serine residue at position 282 of the HEA FAE1 sequences is substituted by phenylalanine in LEA B. napus cv. Westar. Using site directed mutagenesis, the phenylalanine 282 residue was substituted with a serine residue in the FAE1 polypeptide from B. napus cv. Westar, the mutated gene was expressed in yeast and GC analysis revealed the presence of very long chain monounsaturated fatty acids (VLCMFAs), indicating that the elongase activity was restored in the LEA FAE1 enzyme by the single amino acid substitution. Thus, for the first time, the low erucic acid trait in canola B. napus can be attributed to a single amino acid substitution which prevents the biosynthesis of the eicosenoic and erucic acids.


Subject(s)
Acetyltransferases/chemistry , Brassica napus/enzymology , Brassica napus/metabolism , Erucic Acids/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/chemistry , Amino Acid Sequence , Chromatography, Gas , Cloning, Molecular , Fatty Acid Elongases , Immunoblotting , Microsomes , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Peptides/chemistry , Phenylalanine/chemistry , Promoter Regions, Genetic , Serine/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...