Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol Parasites Wildl ; 17: 218-224, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35242528

ABSTRACT

Parasites have the potential to negatively affect host populations, if infection intensity is high. For parasites in which part of life cycle takes place outside the host, host infection intensity is likely affected by climate condition. Therefore, the parasite's impact on the host populations could be related to climatic conditions and may be altered with climate change. The aim of our study was to analyse the prevalence and infection intensity of two nematodes (Aonchotheca putorii and Molineus patens) from the Northern Hemisphere in relation to variations in climatic conditions. We reviewed 54 published studies on the occurrence of these two nematode species in 7 mustelid hosts. For A. putorii, infection parameters were higher when the stomach was included in the analyses compared to M. patens. The seasonality of precipitation influenced the prevalence the most, and the mean temperature of the warmest quarter had the strongest influence on infection intensity. The predicted prevalence of M. patens increased with increasing seasonal variation in precipitation, while the prevalence of A. putorii decreased. The predicted infection intensity of M. patens decreased with increasing precipitation seasonality, whereas the intensity of A. putorii infection did not change much. A. putorii infection intensity significantly decreased with increasing mean temperature of the warmest quarter, while the infection intensity of M. patens was not significantly related to this variable. Prevalence and infection intensity varied over the geographic range for both parasites, broadly with higher levels in northern latitudes for A. putorii and in southern latitudes for M. patens. Our study highlights the differences between these two nematode species and shows that the severity of host infection by these parasites is complex and mediated by climatic conditions. The results suggest that current climate change may potentially modify susceptibility and exposure to parasitic infections in mustelids.

2.
Conserv Physiol ; 8(1): coaa003, 2020.
Article in English | MEDLINE | ID: mdl-32025304

ABSTRACT

Cortisol concentrations in hair are used increasingly as a biomarker of long-term stress in free-ranging wildlife. Cortisol is believed to be integrated into hair primarily during its active growth phase, typically occurring over weeks to months or longer periods, depending on latitude. Cortisol concentrations in hair thus reflect the activity of the hypothalamic-pituitary-adrenal axis over this time. However, local, independent cortisol secretion within the skin, which includes hair follicles, may also contribute to cortisol levels in growing hair. Methodological differences between studies include the measurement of cortisol in only the hair shaft (i.e. follicle absent, as with shaved hair) versus the whole hair (i.e. follicle present, as with plucked hair). If the concentration of cortisol in the follicle is high enough to influence the overall hair cortisol concentration (HCC), this could confound comparisons between studies using different types of hair samples (hair shafts vs. whole hair) and collection methods. Here, we test the hypothesis that cortisol present in follicles influences HCC. We compared HCC in paired subsamples of hair with and without follicles from 30 free-ranging Scandinavian brown bears (Ursus arctos) and observed significantly greater HCC in samples with follicles present. The effect of follicles remained significant also with sex and age of sampled bears taken into account in a linear mixed model. Finally, we provide an overview of collection methods and types of hair samples used for HCC analysis in 77 studies dealing with stress in wild mammal species. Our findings highlight the need to unify methods of hair collection and preparation to allow for valid comparisons, and to optimize labour input in ecophysiological studies.

3.
Sci Rep ; 7(1): 10399, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871202

ABSTRACT

The current debate about megafaunal extinctions during the Quaternary focuses on the extent to which they were driven by humans, climate change, or both. These two factors may have interacted in a complex and unexpected manner, leaving the exact pathways to prehistoric extinctions unresolved. Here we quantify, with unprecedented detail, the contribution of humans and climate change to the Holocene decline of the largest living terrestrial carnivore, the brown bear (Ursus arctos), on a continental scale. We inform a spatially explicit metapopulation model for the species by combining life-history data and an extensive archaeofaunal record from excavations across Europe with reconstructed climate and land-use data reaching back 12,000 years. The model reveals that, despite the broad climatic niche of the brown bear, increasing winter temperatures contributed substantially to its Holocene decline - both directly by reducing the species' reproductive rate and indirectly by facilitating human land use. The first local extinctions occurred during the Mid-Holocene warming period, but the rise of the Roman Empire 2,000 years ago marked the onset of large-scale extinctions, followed by increasingly rapid range loss and fragmentation. These findings strongly support the hypothesis that complex interactions between climate and humans may have accelerated megafaunal extinctions.


Subject(s)
Extinction, Biological , Ursidae/growth & development , Animals , Climate Change , Europe , Human Activities , Humans
4.
Biol Lett ; 11(1): 20140871, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568153

ABSTRACT

The dynamics of range formation are important for understanding and predicting species distributions. Here, we focus on a process that has thus far been overlooked in the context of range formation; the accumulation of mutation load. We find that mutation accumulation severely reduces the extent of a range across an environmental gradient, especially when dispersal is limited, growth rate is low and mutations are of intermediate deleterious effect. Our results illustrate the important role deleterious mutations can play in range formation. We highlight this as a necessary focus for further work, noting particularly the potentially conflicting effects dispersal may have in reducing mutation load and simultaneously increasing migration load in marginal populations.


Subject(s)
Animal Distribution , Animal Migration , Genetics, Population , Mutation , Animals , Environment , Models, Theoretical
5.
PeerJ ; 2: e544, 2014.
Article in English | MEDLINE | ID: mdl-25250211

ABSTRACT

Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator-prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment.

6.
J Theor Biol ; 316: 61-9, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-22995820

ABSTRACT

Searching individuals need to take decisions on where and how long to search. When food is spatially aggregated, detection of a food item signals a probability for the presence of further prey items in its surrounding. Organisms can thus intensify search effort upon detecting a prey item, but after unsuccessfully searching for a while, return to the previous, extensive search, this strategy is known as 'area-concentrated-search' (ACS). Here we present results of simulations where individuals perform ACS employing a correlated random walk with variable directional persistence. Switching between intensive and extensive search (with respectively low and high directional persistence) is a function of searcher's internal state represented as 'satiety' level depending on preceding consumption of prey items. We explore the effect of this function's control parameters ('switching level' i.e., the satiety at which the switching occurs, and the switchover shape parameter) on searching efficiency in dependence of (1) prey items' spatial distribution ranging from randomly uniform to highly contagious, (2) the overall prey density, and (3) prey 'caloric' value. Our main conclusions: (1) the form of the adopted switchover exerts an effect on searching efficiency, and this effect is most pronounced in landscapes with highly aggregated resources. Except for the most homogeneous prey distributions, there was a clear optimum area within the movement parameter space, yielding highest efficiency. (2) The optimal switching level is larger in heterogeneous landscapes, but optimum switchover shape is little affected by any of the landscape attributes. In most landscapes, it is most profitable to switch gradually rather than abruptly. (3) The success and optimal switching level depend not only on the prey's spatial distribution but also on average prey density while the value of prey items has little effect on the optimal movement parameters.


Subject(s)
Appetitive Behavior/physiology , Food Chain , Predatory Behavior/physiology , Animals , Computer Simulation , Demography , Ecosystem , Efficiency/physiology , Feeding Behavior/physiology , Geography , Movement/physiology , Nutritive Value/physiology , Population Density
7.
PLoS One ; 7(9): e44897, 2012.
Article in English | MEDLINE | ID: mdl-23028666

ABSTRACT

Sensory limitation plays an important role in the evolution of animal behaviour. Animals have to find objects of interest (e.g. food, shelters, predators). When sensory abilities are strongly limited, animals adjust their behaviour to maximize chances for success. Bats are nocturnal, live in complex environments, are capable of flight and must confront numerous perceptual challenges (e.g. limited sensory range, interfering clutter echoes). This makes them an excellent model for studying the role of compensating behaviours to decrease costs of finding resources. Cavity roosting bats are especially interesting because the availability of tree cavities is often limited, and their quality is vital for bats during the breeding season. From a bat's sensory point of view, cavities are difficult to detect and finding them requires time and energy. However, tree cavities are also long lasting, allowing information transfer among conspecifics. Here, we use a simple simulation model to explore the benefits of tree selection, memory and eavesdropping (compensation behaviours) to searches for tree cavities by bats with short and long perception range. Our model suggests that memory and correct discrimination of tree suitability are the basic strategies decreasing the cost of roost finding, whereas perceptual range plays a minor role in this process. Additionally, eavesdropping constitutes a buffer that reduces the costs of finding new resources (such as roosts), especially when they occur in low density. We conclude that natural selection may promote different strategies of roost finding in relation to habitat conditions and cognitive skills of animals.


Subject(s)
Animal Communication , Chiroptera/physiology , Memory , Models, Biological , Nesting Behavior/physiology , Sensation/physiology , Trees , Animals , Echolocation , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...