Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dis ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140311

ABSTRACT

BACKGROUND: Chronic norovirus infection (CNI) causes significant morbidity in immunocompromised patients. No effective prevention or treatment currently exists. METHODS: Two patients with inborn errors of immunity, X- linked severe combined immunodeficiency (X-SCID) and DOCK8 deficiency, were followed longitudinally for clinical course, immune reconstitution, norovirus-specific T cell (NST) response, B cell reconstitution, and norovirus-specific antibody production. Samples were obtained in the peri-hematopoietic stem cell transplant setting (HSCT) before and after CNI clearance. The norovirus strain causing CNI was followed longitudinally for norovirus stool viral loads and sequencing. RESULTS: The noroviruses were identified as GII.4 Sydney[P4 New Orleans] in one patient and GII.17[P17] in the other. An exacerbation of diarrhea post-HSCT in the patient with X-SCID was consistent with norovirus infection but not with graft-vs-host-disease on pathologic samples. Both patients recovered polyfunctional NSTs in the CD4 and CD8 T cell compartments which recognized multiple norovirus structural and non-structural viral antigens. T cell responses were minimal during active CNI but detectable after resolution. Mapping of norovirus-specific T cell responses between the patient with DOCK8 and his matched sibling donor were nearly identical. B cell reconstitution or new endogenous antibody production for IgA or IgG were not observed. CONCLUSION: This report is the first to demonstrate reconstitution of norovirus-specific T cell immunity after HSCT closely temporally aligned with clearance of CNI suggesting that cellular immunity is sufficient for norovirus clearance.

2.
J Infect Dis ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207021

ABSTRACT

BACKGROUND: Noroviruses are an important viral cause of chronic diarrhea in immunocompromised individuals. METHOD: We collected norovirus-positive stool samples (n=448) from immunocompromised patients (n=88) at the National Institutes of Health Clinical Research Center, U.S. from 2010-2022. We assessed clinical characteristics of the cohort, norovirus molecular epidemiology, and infectivity of norovirus specimens in human intestinal enteroids (HIEs) monolayers. RESULTS: Thirty-nine of the 88 patients had sequential stool samples that allowed documentation of chronic norovirus infection with shedding levels ranging from 104 to 1011 genome copies/g of stool. The majority with confirmed chronic norovirus infection in this cohort (32/39, 82%) had clinical evidence of an inborn error of immunity (13 identified monogenic diseases), most with combined immunodeficiency (15 of 32) or common variable immunodeficiency (11 of 32). Noroviruses detected in the cohort were genetically diverse: both Genogroup I (GI.2, GI.3, GI.5, and GI.6) and Genogroup II (GII.1-GII.4, GII.6, GII.7, GII.12, GII.14, and GII.17) genotypes were detected, with GII.4 variants (Osaka, Apeldoorn, Den Haag, New Orleans, and Sydney) predominant (51 of 88, 57.9%). Viruses belonging to the GII.4 Sydney variant group that replicated in HIEs (n=9) showed a higher fold-increase in RNA genome copies during infection compared to others that replicated. CONCLUSIONS: Genetically and biologically diverse noroviruses established chronic infection in individuals with both inborn and acquired immunologic defects enrolled in an NIH surveillance study spanning 12 years, demonstrating the unique nature of each virus and host interaction.

SELECTION OF CITATIONS
SEARCH DETAIL