Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (179)2022 01 25.
Article in English | MEDLINE | ID: mdl-35156657

ABSTRACT

Starch granules (SGs) exhibit different morphologies depending on the plant species, especially in the endosperm of the Poaceae family. Endosperm phenotyping can be used to classify genotypes based on SG morphotype using scanning electron microscopic (SEM) analysis. SGs can be visualized using SEM by slicing through the kernel (pericarp, aleurone layers, and endosperm) and exposing the organellar contents. Current methods require the rice kernel to be embedded in plastic resin and sectioned using a microtome or embedded in a truncated pipette tip and sectioned by hand using a razor blade. The former method requires specialized equipment and is time-consuming, while the latter introduces a new host of problems depending on rice genotype. Chalky rice varieties, particularly, pose a problem for this type of sectioning due to the friable nature of their endosperm tissue. Presented here is a technique for preparing translucent and chalky rice kernel sections for microscopy, requiring only pipette tips and a scalpel blade. Preparing the sections within the confines of a pipette tip prevents rice kernel endosperm from shattering (for translucent or 'vitreous' phenotypes) and crumbling (for chalky phenotypes). Using this technique, endosperm cell patterning and the structure of intact SGs can be observed.


Subject(s)
Oryza , Endosperm , Gene Expression Regulation, Plant , Microscopy, Electron, Scanning , Oryza/genetics , Phenotype , Plant Proteins/metabolism , Starch/metabolism
2.
Front Plant Sci ; 9: 754, 2018.
Article in English | MEDLINE | ID: mdl-29915611

ABSTRACT

Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY: Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.

3.
J Cell Sci ; 131(2)2018 01 29.
Article in English | MEDLINE | ID: mdl-28320821

ABSTRACT

Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Chloroplasts/metabolism , Organelles/metabolism , Arabidopsis/ultrastructure , Chlorophyll/metabolism , Chloroplasts/ultrastructure , Mutation/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plants, Genetically Modified , Time-Lapse Imaging , Trichomes/metabolism , Trichomes/ultrastructure
5.
Front Plant Sci ; 6: 783, 2015.
Article in English | MEDLINE | ID: mdl-26442089

ABSTRACT

Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2-1.5 µm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions.

6.
Front Plant Sci ; 6: 1253, 2015.
Article in English | MEDLINE | ID: mdl-26834765

ABSTRACT

Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.

7.
Protoplasma ; 252(1): 359-71, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24965372

ABSTRACT

Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.


Subject(s)
Green Fluorescent Proteins/metabolism , Plant Cells/metabolism , Plastids/metabolism
9.
J Integr Plant Biol ; 54(11): 851-67, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23046073

ABSTRACT

Cell walls lock each cell in a specific position within the supra-organization of a plant. Despite its fixed location, each cell must be able to sense alterations in its immediate environment and respond rapidly to ensure the optimal functioning, continued growth and development, and eventual long-term survival of the plant. The ultra-structural detail that underlies our present understanding of the plant cell has largely been acquired from fixed and processed material that does not allow an appreciation of the dynamic nature of sub-cellular events in the cell. In recent years, fluorescent protein-aided imaging of living plant cells has added to our understanding of the dynamic nature of the plant cell. One of the major outcomes of live imaging of plant cells is the growing appreciation that organelle shapes are not fixed, and many organelles extend their surface transiently in rapid response to environmental stimuli. In many cases, the extensions appear as tubules extending from the main organelle. Specific terms such as stromules from plastids, matrixules from mitochondria, and peroxules from peroxisomes have been coined to describe the extensions. Here, we review our present understanding of organelle extensions and discuss how they may play potential roles in maintaining cellular homeostasis in plant cells.


Subject(s)
Organelles/metabolism , Plant Cells/metabolism , Actin Cytoskeleton/metabolism , Models, Biological , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...