Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 97(2): e178-e190, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33947776

ABSTRACT

OBJECTIVE: To determine whether 1-stage, limited corticectomy controls seizures in patients with MRI-positive, bottom-of-sulcus dysplasia (BOSD). METHODS: We reviewed clinical, neuroimaging, electrocorticography (ECoG), operative, and histopathology findings in consecutively operated patients with drug-resistant focal epilepsy and MRI-positive BOSD, all of whom underwent corticectomy guided by MRI and ECoG. RESULTS: Thirty-eight patients with a median age at surgery of 10.2 (interquartile range [IQR] 6.0-14.1) years were included. BOSDs involved eloquent cortex in 15 patients. Eighty-seven percent of patients had rhythmic spiking on preresection ECoG. Rhythmic spiking was present in 22 of 24 patients studied with combined depth and surface electrodes, being limited to the dysplastic sulcus in 7 and involving the dysplastic sulcus and gyral crown in 15. Sixty-eight percent of resections were limited to the dysplastic sulcus, leaving the gyral crown. Histopathology was focal cortical dysplasia (FCD) type IIb in 29 patients and FCDIIa in 9. Dysmorphic neurons were present in the bottom of the sulcus but not the top or the gyral crown in 17 of 22 patients. Six (16%) patients required reoperation for postoperative seizures and residual dysplasia; reoperation was not correlated with ECoG, neuroimaging, or histologic abnormalities in the gyral crown. At a median 6.3 (IQR 4.8-9.9) years of follow-up, 33 (87%) patients are seizure-free, 31 off antiseizure medication. CONCLUSION: BOSD can be safely and effectively resected with MRI and ECoG guidance, corticectomy potentially being limited to the dysplastic sulcus, without need for intracranial EEG monitoring and functional mapping. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that 1-stage, limited corticectomy for BOSD is safe and effective for control of seizures.


Subject(s)
Cerebral Cortex/surgery , Epilepsy/surgery , Malformations of Cortical Development, Group I/surgery , Adolescent , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Child , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Malformations of Cortical Development, Group I/diagnostic imaging , Malformations of Cortical Development, Group I/physiopathology , Monitoring, Physiologic , Neurosurgical Procedures/methods , Preoperative Care , Treatment Outcome
2.
Epilepsy Res ; 171: 106572, 2021 03.
Article in English | MEDLINE | ID: mdl-33662678

ABSTRACT

Our previous studies suggest the tuber center is the seizure focus in tuberous sclerosis complex (TSC). We report findings from 5 epilepsy surgeries in 4 children with TSC and focal motor seizures from single tubers in primary sensorimotor cortex in which resection was limited to the cortex in the tuber center. Intraoperative electrocorticography showed epileptiform activity in the tuber center, with or without propagation to the tuber rim and surrounding perituberal cortex. Histopathology showed an abundance of dysmorphic neurons in the tuber center compared to the rim in four paired specimens, dysmorphic neurons being the reported epileptogenic cell line in TSC. Associated focal motor seizures were eliminated in all children (mean follow up 6.3 years) without postoperative deficits. Tuber center resections are a potential alternative to complete tuberectomy in patients with epileptogenic tubers in eloquent cortex and potentially also in children with a high tuber load and multifocal seizures.


Subject(s)
Epilepsy , Seizures , Sensorimotor Cortex , Tuberous Sclerosis , Electrocorticography , Electroencephalography , Epilepsy/etiology , Epilepsy/surgery , Epilepsy, Partial, Motor , Humans , Seizures/etiology , Seizures/surgery , Tuberous Sclerosis/complications , Tuberous Sclerosis/surgery
3.
Dev Med Child Neurol ; 63(7): 791-801, 2021 07.
Article in English | MEDLINE | ID: mdl-33432576

ABSTRACT

AIM: To investigate associations between clinical factors and the development of autism spectrum disorder (ASD) in children with tuberous sclerosis complex (TSC), specifically seizures, electroencephalogram abnormalities, tubers and other neurostructural abnormalities, and genetic factors. METHOD: MEDLINE, Embase, PubMed, the Cochrane Library, and Web of Science were searched until January 2019. Studies that considered the predefined factors for development of ASD in children with TSC were included, following PRISMA-P guidelines. Two authors independently reviewed titles, abstracts, and full texts, extracted data, and assessed risk of bias. RESULTS: Forty-two studies with 3542 children with TSC were included. ASD was associated with a history of seizures (odds ratio [OR] 3.79, 95% confidence interval [CI] 1.77-8.14), infantile spasms compared with other seizure types (OR 3.04, 95% CI 2.17-4.27), onset of any seizure type during infancy (OR 2.65, 95% CI 1.08-6.54), and male sex (OR 1.62, 95% CI 1.23-2.14). There was no association with tuber number, tuber location, or genotype. INTERPRETATION: While a causal link between seizures and ASD in children with TSC cannot be inferred, a strong association between seizures and ASD in children with TSC, particularly with seizure onset during infancy and specifically infantile spasms, is present. Children with TSC and infant-onset seizures should be monitored for emerging features of ASD. What this paper adds Seizures and autism spectrum disorder (ASD) strongly associate in children with tuberous sclerosis complex (TSC). Infant-onset seizures and infantile spasms are particularly strongly associated with ASD in TSC.


Subject(s)
Autism Spectrum Disorder/complications , Tuberous Sclerosis/complications , Child , Humans , Risk Factors
4.
Epilepsy Behav ; 106: 107005, 2020 05.
Article in English | MEDLINE | ID: mdl-32199347

ABSTRACT

INTRODUCTION: Children with epilepsy report lower health-related quality of life (QOL) compared with healthy children and those with other chronic disorders. This study piloted the recently published Pediatric Quality of Life Inventory (PedsQL) Epilepsy Module (PedsQL-EM) in an ambulatory setting and studied epilepsy-related factors contributing to QOL in children with epilepsy. METHODS: Children with epilepsy aged 8-18 years who were ambulant and verbal were recruited from pediatric neurology clinics. Children and their caregivers completed age-appropriate versions of the PedsQL-EM (8-12 or 13-18 years) in the clinic waiting area. Treating neurologists completed medical questionnaires about their patients' epilepsy. RESULTS: We collected 151 parent-report and 127 self-report PedsQL-EMs. Administration time was 5-10 min with some children receiving assistance from the researcher. Mean age of children was 12.9+/-3.0, with 77 females (51%). Parents reported lower mean QOL scores across all subdomains compared with their children. Parents reported significantly lower QOL for children with earlier age at epilepsy onset, longer epilepsy duration, presence of seizures during the last month, more severe epilepsy, increased number of antiepileptic drugs (AEDs), and cognitive comorbidity. The same factors impacted on child self-reporting, but with more variability across subdomains. CONCLUSIONS: The PedsQL-EM is an epilepsy-specific measure of QOL that is quick and easy to administer and is sensitive to the clinical factors reported to impact on QOL in pediatric epilepsy.


Subject(s)
Ambulatory Care/standards , Epilepsy/psychology , Parents/psychology , Quality of Life/psychology , Self Report/standards , Surveys and Questionnaires/standards , Adolescent , Ambulatory Care/methods , Caregivers/psychology , Child , Epilepsy/diagnosis , Epilepsy/therapy , Female , Humans , Male , Neurologists/standards , Pediatricians/standards
5.
Front Neurosci ; 13: 1254, 2019.
Article in English | MEDLINE | ID: mdl-31824251

ABSTRACT

BACKGROUND: Optic radiation (OR) tractography may help predict and reduce post-neurosurgical visual field deficits. OR tractography methods currently lack pediatric and surgical focus. PURPOSE: We propose a clinically feasible OR tractography strategy in a pediatric neurosurgery setting and examine its intra-rater and inter-rater reliability/agreements. METHODS: Preoperative and intraoperative MRI data were obtained from six epilepsy and two brain tumor patients on 3 Tesla MRI scanners. Four raters with different clinical experience followed the proposed strategy to perform probabilistic OR tractography with manually drawing anatomical landmarks to reconstruct the OR pathway, based on fiber orientation distributions estimated from high angular resolution diffusion imaging data. Intra- and inter-rater reliabilities/agreements of tractography results were assessed using intraclass correlation coefficient (ICC) and dice similarity coefficient (DSC) across various tractography and OR morphological metrics, including the lateral geniculate body positions, tract volumes, and Meyer's loop position from temporal anatomical landmarks. RESULTS: Good to excellent intra- and inter-rater reproducibility was demonstrated for the majority of OR reconstructions (ICC = 0.70-0.99; DSC = 0.84-0.89). ICC was higher for non-lesional (0.82-0.99) than lesional OR (0.70-0.99). The non-lesional OR's mean volume was 22.66 cm3; the mean Meyer's loop position was 29.4 mm from the temporal pole, 5.89 mm behind of and 10.26 mm in front of the temporal ventricular horn. The greatest variations (± 1.00-3.00 mm) were observed near pathology, at the tract edges or at cortical endpoints. The OR tractography were used to assist surgical planning and guide lesion resection in all cases, no patient had new visual field deficits postoperatively. CONCLUSION: The proposed tractography strategy generates reliable and reproducible OR tractography images that can be reliably implemented in the routine, non-emergency pediatric neurosurgical setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...