Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 8(4)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400265

ABSTRACT

Low temperature cofired ceramics (LTCC) provide a technology for the 3-dimensional integration of sensor arrays into bioreactors covering dimensions of several hundred micrometers. Since optical control in such assemblies is not possible, the in situ detection of cell adhesion on impedance electrodes with high spatial resolution would deliver crucial information. A current limitation is the increasing impedance of microelectrodes with decreasing diameter. This study evaluates the suitability of thick film gold electrodes, pristine and coated with electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT), for the detection of cell adhesion on the electrode surface. The impedance as criterion for cell attachment is measured with a recording system for electroactive cells with the aim of improving usability. Two cell cultures with different adhesion characteristic are used for adhesion assessment on planar test chips. The impedance increase measured on individual PEDOT coated electrodes due to tight contact of cells reaches a factor of 6.8 in cultures of well-adherent HepG2 cells. Less adhered NG108-15 cells produce a maximum impedance increase by a factor of 2.6. Since the electrode impedance is significantly reduced by PEDOT coating, a reduction of the electrode diameter to values below 100 µm and spatially resolved detection is possible. The results encourage further studies using PEDOT coated thick film electrodes as bio-electronic-interfaces. We presume that such miniaturized electrodes are suitable for 3-dimensional recordings in electroactive cell cultures, providing information of local cell adhesion at the same time.


Subject(s)
Electrodes , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Adhesion/physiology , Hep G2 Cells , Humans
2.
Biosensors (Basel) ; 8(2)2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29621176

ABSTRACT

Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PEDOT: PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance Rs of 32 kOhm and serial capacitance Cs of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.


Subject(s)
Electric Impedance/therapeutic use , Cell Culture Techniques , Film Dosimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...