Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 26(1): 137-152, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37555799

ABSTRACT

BACKGROUND: Approximately 35% of pituitary adenoma (PA) display an aggressive profile, resulting in low surgical total resection rates, high recurrence rates, and worse prognosis. However, the molecular mechanism of PA invasion remains poorly understood. Although "a disintegrin and metalloproteinases" (ADAMs) are associated with the progression of many tumors, there are no reports on ADAM22 in PA. METHODS: PA transcriptomics databases and clinical specimens were used to analyze the expression of ADAM22. PA cell lines overexpressing wild-type ADAM22, the point mutation ADAM22, the mutated ADAM22 without disintegrin domain, and knocking down ADAM22 were generated. Cell proliferation/invasion assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, mass spectrometry, Reverse transcription-quantitative real-time PCR, phos-tag SDS-PAGE, and Western blot were performed for function and mechanism research. Nude mice xenograft models and rat prolactinoma orthotopic models were used to validate in vitro findings. RESULTS: ADAM22 was significantly overexpressed in PA and could promote the proliferation, migration, and invasion of PA cells. ADAM22 interacted with integrin ß1 (ITGB1) and activated FAK/PI3K and FAK/ERK signaling pathways through its disintegrin domain to promote PA progression. ADAM22 was phosphorylated by PKA and recruited 14-3-3, thereby delaying its degradation. ITGB1-targeted inhibitor (anti-itgb1) exerted antitumor effects and synergistic effects in combination with somatostatin analogs or dopamine agonists in treating PA. CONCLUSIONS: ADAM22 was upregulated in PA and was able to promote PA proliferation, migration, and invasion by activating ITGB1 signaling. PKA may regulate the degradation of ADAM22 through post-transcriptional modification levels. ITGB1 may be a potential therapeutic target for PA.


Subject(s)
Disintegrins , Pituitary Neoplasms , Mice , Humans , Animals , Rats , Integrin beta1/metabolism , Mice, Nude , Metalloproteases , Cell Line, Tumor , Cell Movement , Cell Proliferation
2.
Cancer Cell Int ; 23(1): 49, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932402

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS: Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and É£H2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS: Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION: TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.

3.
J Clin Med ; 11(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35011868

ABSTRACT

Pituitary adenomas (PAs) are mostly benign endocrine tumors that can be treated by resection or medication. However, up to 10% of PAs show an aggressive behavior with invasion of adjacent tissue, rapid proliferation, or recurrence. Here, we provide an overview of target structures in aggressive PAs and summarize current clinical trials including, but not limited to, PAs. Mainly, drug targets in PAs are based on general features of tumor cells such as immune checkpoints, so that programmed cell death 1 (ligand 1) (PD-1/PD-L1) targeting may bear potential to cure aggressive PAs. In addition, epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and their downstream pathways are triggered in PAs, thereby modulating tumor cell proliferation, migration and/or tumor angiogenesis. Temozolomide (TMZ) can be an effective treatment of aggressive PAs. Combination of TMZ with 5-Fluorouracil (5-FU) or with radiotherapy could strengthen the therapeutic effects as compared to TMZ alone. Dopamine agonists (DAs) are the first line treatment for prolactinomas. Dopamine receptors are also expressed in other subtypes of PAs which renders Das potentially suitable to treat other subtypes of PAs. Furthermore, targeting the invasive behavior of PAs could improve therapy. In this regard, human matrix metalloproteinase (MMP) family members and estrogens receptors (ERs) are highly expressed in aggressive PAs, and numerous studies demonstrated the role of these proteins to modulate invasiveness of PAs. This leaves a number of treatment options for aggressive PAs as reviewed here.

5.
Cancers (Basel) ; 11(7)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31262047

ABSTRACT

About 95% of patients with Glioblastoma (GBM) show tumor relapse, leaving them with limited therapeutic options as recurrent tumors are most often resistant to the first line chemotherapy standard Temozolomide (TMZ). To identify molecular pathways involved in TMZ resistance, primary GBM Stem-like Cells (GSCs) were isolated, characterized, and selected for TMZ resistance in vitro. Subsequently, RNA sequencing analysis was performed and revealed a total of 49 differentially expressed genes (|log2-fold change| > 0.5 and adjusted p-value < 0.1) in TMZ resistant stem-like cells compared to their matched DMSO control cells. Among up-regulated genes, we identified carbonic anhydrase 2 (CA2) as a candidate gene correlated with glioma malignancy and patient survival. Notably, we describe consistent up-regulation of CA2 not only in TMZ resistant GSCs on mRNA and protein level, but also in patient-matched clinical samples of first manifest and recurrent tumors. Co-treatment with the carbonic anhydrase inhibitor Acetazolamid (ACZ) sensitized cells to TMZ induced cell death. Cumulatively, our findings illustrate the potential of CA2 as a chemosensitizing target in recurrent GBM and provide a rationale for a therapy associated inhibition of CA2 to overcome TMZ induced chemoresistance.

6.
Cell Rep ; 26(13): 3672-3683.e7, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917320

ABSTRACT

Glioblastoma (GBM) is highly refractory to therapy and associated with poor clinical outcome. Here, we reveal a critical function of the promitotic and adhesion-mediating discoidin domain receptor 1 (DDR1) in modulating GBM therapy resistance. In GBM cultures and clinical samples, we show a DDR1 and GBM stem cell marker co-expression that correlates with patient outcome. We demonstrate that inhibition of DDR1 in combination with radiochemotherapy with temozolomide in GBM models enhances sensitivity and prolongs survival superior to conventional therapy. We identify a 14-3-3-Beclin-1-Akt1 protein complex assembling with DDR1 to be required for prosurvival Akt and mTOR signaling and regulation of autophagy-associated therapy sensitivity. Our results uncover a mechanism driven by DDR1 that controls GBM therapy resistance and provide a rationale target for the development of therapy-sensitizing agents.


Subject(s)
14-3-3 Proteins/metabolism , Beclin-1/metabolism , Brain Neoplasms/metabolism , Discoidin Domain Receptor 1/metabolism , Glioblastoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Autophagy , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Cell Line , Drug Delivery Systems , Drug Resistance, Neoplasm , Female , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Humans , Male , Mice , Mice, Nude , Prognosis , Radiation Tolerance , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...