Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 863: 160804, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36567200

ABSTRACT

Reducing phosphorus (P) concentrations in aquatic ecosystems, is necessary to improve water quality and reduce the occurrence of harmful cyanobacterial algal blooms. Managing P reduction requires information on the role rivers play in P transport from land to downstream water bodies, but we have a poor understanding of when and where river systems are P sources or sinks. During the summers of 2019 and 2021, we sampled streambed sediment at 78 sites throughout the Maumee River network (a major source of P loads to Lake Erie) focusing on the zero equilibrium P concentration (EPC0), the soluble reactive phosphorus (SRP) concentration at which sediment neither sorbs nor desorbs P. We used structural equation modeling to identify direct and indirect drivers of EPC0. Stream sediment was a P sink at 40 % and 67 % of sites in 2019 and 2021, respectively. During both years, spatial variation in EPC0 was shaped by stream water SRP concentrations, sediment P saturation, and sediment physicochemical characteristics. In turn, SRP concentrations and sediment P saturation (PSR) were influenced by agricultural land use and stream size. Effect of stream size differed among years with stream size having a greater effect on SRP in 2019 and on PSR in 2021. Streambed sediment is currently a net P sink across the sites sampled in the Maumee River network during summer, but sediment at these locations, especially sites in headwater streams, may become a P source if stream water SRP concentrations decrease. Our results improve the understanding of watershed- and reach-scale controls on EPC0 but also indicate the need for further research on how changes in SRP concentration as a result of conservation management implementation influences the role of streambed sediment in P transport to Lake Erie.

2.
J Environ Qual ; 48(2): 403-411, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30951115

ABSTRACT

Sediment oxygen demand (SOD) plays a fundamental role in biological and chemical processes within the benthic layer of a water body. Land use, including agricultural land use, can affect SOD. However, a wide variety of approaches have been used for in situ SOD chamber construction and data collection, and modelers frequently use SOD values from the literature, without consideration of the differences in methods. Here, we review existing literature on SOD chambers (32 papers, 1974-2016), compare the differences between in situ and laboratory methods, evaluate the effects of in situ chamber mixing, and discuss common challenges associated with deployment. A cohesive in situ sealed chamber design for use with a multiparameter water-quality instrument is presented as an effort toward standardizing SOD methodology, an important consideration that may facilitate integration of SOD data sets among multiple research efforts.


Subject(s)
Biological Oxygen Demand Analysis/methods , Geologic Sediments/chemistry , Environmental Monitoring
3.
PLoS One ; 12(3): e0173419, 2017.
Article in English | MEDLINE | ID: mdl-28267810

ABSTRACT

Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 - 32 µm fraction), total phosphorus (<10 and 10 - 32 µm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 - 32 µm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 µm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth.


Subject(s)
Animal Feed , Bivalvia/growth & development , Body Composition , Fatty Acids/chemistry , Fresh Water , Animal Feed/analysis , Animals , Chlorophyll/analysis , Geologic Sediments , Lipids/analysis , Minnesota , Phytoplankton , Rivers , Wisconsin
4.
Environ Toxicol Chem ; 36(3): 671-681, 2017 03.
Article in English | MEDLINE | ID: mdl-27466973

ABSTRACT

Carbon dioxide (CO2 ) has shown promise as a tool to control movements of invasive Asian carp, but its effects on native freshwater biota have not been well studied. The authors evaluated lethal and sublethal responses of juvenile fatmucket (Lampsilis siliquoidea) mussels to CO2 at levels (43-269 mg/L, mean concentration) that bracket concentrations effective for deterring carp movement. The 28-d lethal concentration to 50% of the mussels was 87.0 mg/L (95% confidence interval [CI] 78.4-95.9) and at 16-d postexposure, 76.0 mg/L (95% CI 62.9-90.3). A proportional hazards regression model predicted that juveniles could not survive CO2 concentrations >160 mg/L for more than 2 wk or >100 mg/L CO2 for more than 30 d. Mean shell growth was significantly lower for mussels that survived CO2 treatments. Growth during the postexposure period did not differ among treatments, indicating recovery of the mussels. Also, CO2 caused shell pitting and erosion. Behavioral effects of CO2 included movement of mussels to the substrate surface and narcotization at the highest concentrations. Mussels in the 110 mg/L mean CO2 treatment had the most movements in the first 3 d of exposure. If CO2 is infused continuously as a fish deterrent, concentrations <76 mg/L are recommended to prevent juvenile mussel mortality and shell damage. Mussels may survive and recover from brief exposure to higher concentrations. Environ Toxicol Chem 2017;36:671-681. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Carbon Dioxide/toxicity , Fresh Water/chemistry , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Carps/growth & development , Dose-Response Relationship, Drug , Introduced Species/trends , Unionidae/growth & development , United States
5.
PLoS One ; 8(8): e70666, 2013.
Article in English | MEDLINE | ID: mdl-23940619

ABSTRACT

Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.


Subject(s)
Bivalvia/metabolism , Ecosystem , Fatty Acids/metabolism , Insecta/metabolism , Agriculture , Animals , Aquatic Organisms/metabolism , Chlorophyll/chemistry , Chlorophyll A , Eutrophication , Food Chain , Lakes , Lipid Metabolism , Michigan , Rivers
6.
J Environ Qual ; 42(2): 573-83, 2013.
Article in English | MEDLINE | ID: mdl-23673850

ABSTRACT

Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.


Subject(s)
Rivers , Wetlands , Mississippi , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...