Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(3): 2836-42, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25752991

ABSTRACT

We report wafer-level fabrication of resonant-body carbon nanotube (CNT) field-effect transistors (FETs) in a dual-gate configuration. An integration density of >10(6) CNTFETs/cm(2), an assembly yield of >80%, and nanoprecision have been simultaneously obtained. Through combined chemical and thermal treatments, hysteresis-free (in vacuum) suspended-body CNTFETs have been demonstrated. Electrostatic actuation by lateral gate and FET-based readout of mechanical resonance have been achieved at room temperature. Both upward and downward in situ frequency tuning has been experimentally demonstrated in the dual-gate architecture. The minuscule mass, high resonance frequency, and in situ tunability of the resonant CNTFETs offer promising features for applications in radio frequency signal processing and ultrasensitive sensing.

2.
Nanotechnology ; 23(22): 225501, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22572200

ABSTRACT

Nanoelectromechanical systems (NEMS) offer the potential to revolutionize fundamental methods employed for signal processing in today's telecommunication systems, owing to their spectral purity and the prospect of integration with existing technology. In this work we present a novel, front-end receiver topology based on a single device silicon nanoelectromechanical mixer-filter. The operation is demonstrated by using the signal amplification in a field effect transistor (FET) merged into a tuning fork resonator. The combination of both a transistor and a mechanical element into a hybrid unit enables on-chip functionality and performance previously unachievable in silicon. Signal mixing, filtering and demodulation are experimentally demonstrated at very high frequencies ( > 100 MHz), maintaining a high quality factor of Q = 800 and stable operation at near ambient pressure (0.1 atm) and room temperature (T = 300 K). The results show that, ultimately miniaturized, silicon NEMS can be utilized to realize multi-band, single-chip receiver systems based on NEMS mixer-filter arrays with reduced system complexity and power consumption.

3.
ACS Nano ; 6(1): 256-64, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22148851

ABSTRACT

Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Nanotechnology/instrumentation , Oscillometry/instrumentation , Transducers , Energy Transfer , Equipment Design , Equipment Failure Analysis , Molecular Conformation , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...