Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 25(2): 72, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36688110

ABSTRACT

MUC13, a transmembrane mucin glycoprotein, is overexpressed in colorectal cancer (CRC), however, its regulation and functions are not fully understood. It has been shown that MUC13 protects colonic epithelial cells from apoptosis. Therefore, studying MUC13 and MUC13-regulated pathways may reveal promising therapeutic approaches for CRC treatment. Growing evidence suggests that microRNAs (miRs) are involved in the development and progression of CRC. In the present study, the MUC13-miR-4647 axis was addressed in association with survival of patients. miR-4647 is predicted in silico to bind to the MUC13 gene and was analyzed by RT-qPCR in 187 tumors and their adjacent non-malignant mucosa of patients with CRC. The impact of previously mentioned genes on survival and migration abilities of cancer cells was validated in vitro. Significantly upregulated MUC13 (P=0.02) in was observed tumor tissues compared with non-malignant adjacent mucosa, while miR-4647 (P=0.05) showed an opposite trend. Higher expression levels of MUC13 (log-rank P=0.05) were associated with worse patient's survival. The ectopic overexpression of studied miR resulted in decreased migratory abilities and worse survival of cells. Attenuated MUC13 expression levels confirmed the suppression of colony forming of CRC cells. In summary, the present data suggested the essential role of MUC13-miR-4647 in patients' survival, and this axis may serve as a novel therapeutic target. It is anticipated MUC13 may hold significant potential in the screening, diagnosis and treatment of CRC.

2.
Mutagenesis ; 35(3): 273-281, 2020 07 11.
Article in English | MEDLINE | ID: mdl-31922572

ABSTRACT

The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case-control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/therapeutic use , ATP-Binding Cassette Transporters/blood , Aged , Case-Control Studies , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Databases, Genetic , Female , Follow-Up Studies , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
Int J Mol Sci ; 19(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373199

ABSTRACT

There is a strong demand for the identification of new biomarkers in colorectal cancer (CRC) diagnosis. Among all liquid biopsy analysts, cell-free circulating DNA (cfDNA) is probably the most promising tool with respect to the identification of minimal residual diseases, assessment of treatment response and prognosis, and identification of resistance mechanisms. Circulating cell-free tumor DNA (ctDNA) maintains the same genomic signatures that are present in the matching tumor tissue allowing for the quantitative and qualitative evaluation of mutation burdens in body fluids. Thus, ctDNA-based research represents a non-invasive method for cancer detection. Among the numerous possible applications, the diagnostic, predictive, and/or prognostic utility of ctDNA in CRC has attracted intense research during the last few years. In the present review, we will describe the different aspects related to cfDNA research and evidence from studies supporting its potential use in CRC diagnoses and the improvement of therapy efficacy. We believe that ctDNA-based research should be considered as key towards the introduction of personalized medicine and patient benefits.


Subject(s)
Circulating Tumor DNA/blood , Colorectal Neoplasms/blood , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating Tumor DNA/analysis , Circulating Tumor DNA/genetics , Colon/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Liquid Biopsy/methods , Prognosis , Rectum/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...