Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(2): 02A733, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931951

ABSTRACT

The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

2.
Rev Sci Instrum ; 85(2): 02A946, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593525

ABSTRACT

The SPIRAL 2 facility, currently under construction, will provide either stable or radioactive beams at high intensity. In addition to the high intensity of stable beams, high charge states must be produced by the ion source to fulfill the RFQ LINAC injection requirements: Q/A = 1/3 at 60 kV ion source extraction voltage. Excepting deuterons and hydrogen, most of the stable beam requests concern metallic elements. The existing 18 GHz electron cyclotron resonance ion source (ECRIS) Phoenix V2 designed at LPSC Grenoble has been used for the tests and will be the source for the SPIRAL 2 commissioning. The tests performed at LPSC for calcium ((40)Ca(14+) and (40)Ca(16+)), nickel ((58)Ni(19+)), and sulfur ((32)S(11+)) are described and discussed. Due to the very high charge states required, the oven method has been chosen. An intensity of 1 pµA has been reached for those elements. The performance and the beam stability have been studied using different buffer gases, and some ionization efficiency preliminary results are given.

3.
Rev Sci Instrum ; 83(2): 02A339, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380186

ABSTRACT

A review of today achieved A∕Q = 3 heavy ions beams is proposed. The daily operation A∕Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

4.
Rev Sci Instrum ; 83(2): 02A915, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380256

ABSTRACT

The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target∕ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.

5.
Rev Sci Instrum ; 81(2): 02A909, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20192406

ABSTRACT

In the frame of the SPIRAL II (Système de Production d'Ions Radioactifs Accélérés en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

6.
Rev Sci Instrum ; 79(2 Pt 2): 02A309, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315099

ABSTRACT

GANIL has been producing many stable and radioactive ion beams for nearly 25 years. Constant progresses have been made in terms of intensity, stability, and reliability. The intensity for some stable metallic beams now exceeds or approaches the p microA level at an energy up to 95 MeV/u, e.g., 1.14 p microA for (36)S (65% enriched) at 77 MeV/u, 0.35 p microA for (58)Ni (63% enriched) at 74 MeV/u. Some recent results with Magnesocene using the metallic ions from volatile compounds method should also make possible the production of metallic beams with an intensity greater than 1 p microA. This has still to be measured. The ISOL facility SPIRAL I has been in operation for almost six years. Up to now, 17 exotic He experiments have been done with 14 target/ion-source (TIS) units; 19 other experiments (with O, Ne, Ar, and Kr) have been achieved with 14 TISs. Statistics show a fairly good ratio of available beam time to scheduled beam time. The radioactive beams and available intensities are compiled in this report. Future developments on radioactive ion beam production are briefly presented, while more details will be discussed elsewhere at this conference.

7.
Rev Sci Instrum ; 79(2 Pt 2): 02A326, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315116

ABSTRACT

Intense heavy ion beam production with electron cyclotron resonance (ECR) ion sources is a common requirement for many of the accelerators under construction in Europe and elsewhere. An average increase of about one order of magnitude per decade in the performance of ECR ion sources was obtained up to now since the time of pioneering experiment of R. Geller at CEA, Grenoble, and this trend is not deemed to get the saturation at least in the next decade, according to the increased availability of powerful magnets and microwave generators. Electron density above 10(13) cm(-3) and very high current of multiply charged ions are expected with the use of 28 GHz microwave heating and of an adequate plasma trap, with a B-minimum shape, according to the high B mode concept [S. Gammino and G. Ciavola, Plasma Sources Sci. Technol. 5, 19 (1996)]. The MS-ECRIS ion source has been designed following this concept and its construction is underway at GSI, Darmstadt. The project is the result of the cooperation of nine European institutions with the partial funding of EU through the sixth Framework Programme. The contribution of different institutions has permitted to build in 2006-2007 each component at high level of expertise. The description of the major components will be given in the following with a view on the planning of the assembly and commissioning phase to be carried out in fall 2007. An outline of the experiments to be done with the MS-ECRIS source in the next two years will be presented.

8.
Rev Sci Instrum ; 79(2 Pt 2): 02A904, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315159

ABSTRACT

In the framework of the production of radioactive ion beams by the isotope separator online method, a new system has been developed at GANIL/SPIRAL I to produce multicharged alkali ions. The principle, referred to as the "direct 1+/N+ method," consists of a surface ionization source associated with a multicharged electron-cyclotron-resonance ion source without an intermediate mass separator. This new system has been tested online using a (48)Ca primary beam at 60.3 A MeV. The experimental evidence of the direct 1+/N+ process has been obtained for a potential difference between the two sources of 11 V and with a 1+/N+ charge breeding efficiency of 0.04% for (47)K(5+). This value is significantly lower than the value of 6% obtained for stable K ions with the standard 1+/N+ method. A possible explanation is given in the text.

SELECTION OF CITATIONS
SEARCH DETAIL
...