Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(36): 12845-12854, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37625160

ABSTRACT

Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties. Thus, to introduce selectivity, it is necessary to modify the liquid-liquid interface with an interfacially stable and selective recognition unit. To this end, we report the synthesis and characterization of amphiphilic block copolymers modified with metal chelators to selectively measure the concentrations of dissolved metal ions. We find that significant reduction in interfacial tensions arises upon quantitative addition of metal ions with high affinity toward functionalized chelators. Furthermore, measurements from UV-vis spectroscopy reveal that complexation of the block copolymers with metal ions leads to an increase in surface excess and surfactant effectiveness. We also demonstrate selective detection of iron(III) cations (Fe3+) on the µM levels even through interference from other mono-, di-, or trivalent cations in complex matrices of synthetic groundwater. Our results provide a unique platform that couples selective recognition and modulation of interfacial behaviors and demonstrates a step forward in the development of the multiplexed sensing device needed to deconvolute the complicated array of contaminants that comprise real-world environmental samples.

2.
Soft Matter ; 19(10): 1930-1940, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36807488

ABSTRACT

Emissive complex droplets with reconfigurable morphology and dynamic optical properties offer exciting opportunities as chemical sensors due to their stimuli-responsive characteristics. In this work, we demonstrated a real-time optical sensing platform that combines poly(dimethylsiloxane) (PDMS) microfluidics and complex droplets as sensing materials. We utilized a mechanism, called directional emission, to transduce changes in interfacial tension into optical signals. We discuss the fabrication and integration of PDMS microfluidics with complex emulsions to facilitate continuous measurement of fluorescent emission and, ultimately, the interfacial tensions. Furthermore, by varying the interfacial functionalization and fluorescent dye with characteristic wavelength, we generate multiple formulations of droplets and obtain differential responses to stimuli that alter interfacial tensions (i.e., composition of surfactants, pH). Our results illustrate a proof-of-concept multiplexed and continuous sensing platform with potential applications in miniaturized, on-site environmental monitoring and biosensing.

3.
ACS Omega ; 6(47): 31390-31395, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34869965

ABSTRACT

Sepsis is a major cause of mortality among hospitalized patients worldwide. Rapid diagnosis is critical as early treatments have been demonstrated to improve survival. Despite the importance of early detection, current technologies and clinical methods are often insufficient due to their lack of the necessary speed, selectivity, or sensitivity. The development of rapid sensing platforms that target sepsis-related biomarkers could significantly improve the outcomes of patients. This Mini-Review focuses on the recent advances in rapid diagnosis of soluble biomarkers in blood with the emphasis on different configurations of point-of-care (POC) instruments. Specifically, it first describes the commonly targeted biomarkers and the mechanisms by which they are detected. Then, it highlights the recently developed sensors that aim to reduce the total time of diagnosis without sacrificing selectivity and limit of detection. These sensors are categorized based on their distinct sensing and transduction mechanisms. Finally, it concludes with a brief outlook over future developments of multiplexed sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...