Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Antonie Van Leeuwenhoek ; 111(1): 89-99, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28889242

ABSTRACT

Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 µg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 µg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Biofilms/drug effects , Metal Nanoparticles , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/physiology , Zinc Oxide/administration & dosage , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Microbial Viability/drug effects , Zinc Oxide/chemistry
2.
Environ Sci Pollut Res Int ; 24(33): 25775-25797, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28988306

ABSTRACT

Water pollution is a serious challenge to the public health. Among different forms of aquatic pollutants, chemical and biological agents create paramount threat to water quality when the safety standards are surpassed. There are many conventional remediatory strategies that are practiced such as resin-based exchanger and activated charcoal/carbon andreverse osmosis. Newer technologies using plants, microorganisms, genetic engineering, and enzyme-based approaches are also proposed for aquatic pollution management. However, the conventional technologies have shown impending inadequacies. On the other hand, new bio-based techniques have failed to exhibit reproducibility, wide specificity, and fidelity in field conditions. Hence, to solve these shortcomings, nanotechnology ushered a ray of hope by applying nanoscale zinc oxide (ZnO), titanium dioxide (TiO2), and tungsten oxide (WO3) particles for the remediation of water pollution. These nanophotocatalysts are active, cost-effective, quicker in action, and can be implemented at a larger scale. These nanoparticles are climate-independent, assist in complete mineralization of pollutants, and can act non-specifically against chemically and biologically based aquatic pollutants. Photocatalysis for environmental remediation depends on the availability of solar light. The mechanism of photocatalysis involves the formation of electron-hole pairs upon light irradiations at intensities higher than their band gap energies. In the present review, different methods of synthesis of nanoscale ZnO, TiO2, and WO3 as well as their structural characterizations have been discussed. Photodegradation of organic pollutants through mentioned nanoparticles has been reviewed with recent advancements. Enhancing the efficacy of photocatalysis through doping of TiO2 and ZnO nanoparticles with non-metals, metals, and metal ions has also been documented in this report.


Subject(s)
Environmental Restoration and Remediation/methods , Metal Nanoparticles/chemistry , Photolysis , Semiconductors , Water Pollution, Chemical/prevention & control , Environmental Restoration and Remediation/instrumentation , Oxides/chemical synthesis , Oxides/chemistry , Titanium/chemistry , Tungsten/chemistry , Zinc Oxide/chemical synthesis , Zinc Oxide/chemistry
3.
Beilstein J Nanotechnol ; 3: 684-91, 2012.
Article in English | MEDLINE | ID: mdl-23213632

ABSTRACT

Paper with antimicrobial properties was developed through in situ growth of ZnO nanorods. The targeted application for this type of paper is in health centers as wallpaper, writing paper, facemasks, tissue paper, etc. The paper was tested on three model microbes, Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Escherichia coli and common airborne fungus Aspergillus niger. No viable bacterial colonies or fungal spores could be detected in the areas surrounding test samples of the antimicrobial paper. Gram-negative bacteria Escherichia coli were found to be inhibited in an area that is 239% and 163% the area of the paper sample under different room lighting conditions, i.e., halogen and fluorescent lamp illumination, respectively. For Gram-positive bacteria Staphylococcus aureus the zones of inhibition surrounding the paper samples are 102% and 70%, and for Aspergillus niger, 224% and 183% of the sample area, under similar lighting conditions.

4.
J Fluoresc ; 22(1): 403-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21932004

ABSTRACT

A novel biocompatible chitosan passivated manganese doped zinc sulfide (Mn doped ZnS) nanophosphor has been synthesized through a simple aqueous precipitation reaction. Upon excitation with ultraviolet light, the quantum dots (QDs) emit an orange luminescence peaking at 590 nm, which is visible to the naked eye. These chitosan coated Mn doped ZnS QDs can have potential applications in bio-labeling, particularly in fluorescence-based imaging. One of the envisioned applications of these QDs is in improving the conventional, organic dye-reliant Fluorescence in situ Hybridization (FISH) technique, a widely used method for microbial detection. Here we demonstrate that the chitosan-capped Mn doped ZnS QDs are suitable for this purpose.


Subject(s)
Escherichia coli/isolation & purification , Manganese/chemistry , Quantum Dots , Sulfides/chemistry , Zinc Compounds/chemistry , Amines/chemistry , Binding Sites , Biocompatible Materials/chemistry , Biological Transport , Chitosan/chemistry , Escherichia coli/cytology , Escherichia coli/metabolism , Microscopy, Fluorescence , Sulfides/metabolism , Zinc Compounds/metabolism
5.
Phys Chem Chem Phys ; 13(27): 12488-96, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21660322

ABSTRACT

Improving the performance of photoactive solid-state devices begins with systematic studies of the metal-semiconductor nanocomposites (NCs) upon which such devices are based. Here, we report the photo-dependent excitonic mechanism and the charge migration kinetics in a colloidal ZnO-Au NC system. By using a picosecond-resolved Förster resonance energy transfer (FRET) technique, we have demonstrated that excited ZnO nanoparticles (NPs) resonantly transfer visible optical radiation to the Au NPs, and the quenching of defect-mediated visible emission depends solely on the excitation level of the semiconductor. The role of the gold layer in promoting photolytic charge transfer, the activity of which is dependent upon the degree of excitation, was probed using methylene blue (MB) reduction at the semiconductor interface. Incident photon-to-current efficiency measurements show improved charge injection from a sensitizing dye to a semiconductor electrode in the presence of gold in the visible region. Furthermore, the short-circuit current density and the energy conversion efficiency of the ZnO-Au NP based dye-sensitized solar cell (DSSC) are much higher than those of a DSSC comprised of only ZnO NP. Our results represent a new paradigm for understanding the mechanism of defect-state passivation and photolytic activity of the metal component in metal-semiconductor nanocomposite systems.

6.
Nanotechnology ; 22(21): 215703, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21451231

ABSTRACT

The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn(2+) ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn(2+) concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn(2+) ions, while inactivation under light conditions was due to the combined effects of Zn(2+) ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/radiation effects , Nanotubes/chemistry , Water Microbiology , Zinc Oxide/pharmacology , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/radiation effects , Escherichia coli/drug effects , Escherichia coli/radiation effects , Light , Zinc Oxide/chemistry
7.
Sci Technol Adv Mater ; 12(1): 013004, 2011 Feb.
Article in English | MEDLINE | ID: mdl-27877377

ABSTRACT

Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

8.
J Colloid Interface Sci ; 354(2): 810-5, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21109250

ABSTRACT

The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.

9.
Nanotechnology ; 21(26): 265703, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20522931

ABSTRACT

We have explored light harvesting of the complex of ZnO nanoparticles with the biological probe Oxazine 1 in the near-infrared region using picosecond-time-resolved fluorescence decay studies. We have used ZnO nanoparticles and Oxazine 1 as a model donor and acceptor, respectively, to explore the efficacy of the Förster resonance energy transfer (FRET) in the nanoparticle-dye system. It has been shown that FRET from the states localized near the surface and those in the bulk of the ZnO nanoparticles can be resolved by measuring the resonance efficiency for various wavelengths of the emission spectrum. It has been observed that the states located near the surface for the nanoparticles (contributing to visible emission at lambda approximately 550 nm) can contribute to very high efficiency (>90%) FRET. The efficiency of light harvesting dynamics of the ZnO nanorods has also been explored in this study and they were found to have much less efficiency (approximately 40%) for energy transfer compared to the nanoparticles. The possibility of an electron transfer reaction has been ruled out from the picosecond-resolved fluorescence decay of the acceptor dye at the ZnO surface.

10.
Beilstein J Nanotechnol ; 1: 14-20, 2010.
Article in English | MEDLINE | ID: mdl-21977391

ABSTRACT

Hydrothermally grown ZnO nanorods have inherent crystalline defects primarily due to oxygen vacancies that enhance optical absorption in the visible spectrum, opening up possibilities for visible light photocatalysis. Comparison of photocatalytic activity of ZnO nanorods and nanoparticle films on a test contaminant methylene blue with visible light irradiation at 72 kilolux (klx) showed that ZnO nanorods are 12-24% more active than ZnO nanoparticulate films. This can be directly attributed to the increased effective surface area for adsorption of target contaminant molecules. Defects, in the form of interstitials and vacancies, were intentionally created by faster growth of the nanorods by microwave activation. Visible light photocatalytic activity was observed to improve by ≈8% attributed to the availability of more electron deficient sites on the nanorod surfaces. Engineered defect creation in nanostructured photocatalysts could be an attractive solution for visible light photocatalysis.

11.
Sci Technol Adv Mater ; 11(5): 055002, 2010 Oct.
Article in English | MEDLINE | ID: mdl-27877367

ABSTRACT

Zinc oxide (ZnO) nanorods were grown on a paper support prepared from soft wood pulp. The photocatalytic activity of a sheet of paper with ZnO nanorods embedded in its porous matrix has been studied. ZnO nanorods were firmly attached to cellulose fibers and the photocatalytic paper samples were reused several times with nominal decrease in efficiency. Photodegradation of up to 93% was observed for methylene blue in the presence of paper filled with ZnO nanorods upon irradiation with visible light at 963 Wm-2 for 120 min. Under similar conditions, photodegradation of approximately 35% was observed for methyl orange. Antibacterial tests revealed that the photocatalytic paper inhibits the growth of Escherichia coli under room lighting conditions.

12.
Sci Technol Adv Mater ; 10(1): 013001, 2009 Feb.
Article in English | MEDLINE | ID: mdl-27877250

ABSTRACT

One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted.

13.
Sci Technol Adv Mater ; 9(2): 025009, 2008 Apr.
Article in English | MEDLINE | ID: mdl-27877984

ABSTRACT

We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 µm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 µm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...