Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(50): 8663-8680, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37879894

ABSTRACT

The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.


Subject(s)
Neurons , Superior Colliculi , Mice , Animals , Superior Colliculi/physiology , Neurons/physiology , Visual Perception/physiology , Reward , Water
2.
Cereb Cortex ; 32(12): 2538-2554, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34613375

ABSTRACT

Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


Subject(s)
Somatosensory Cortex , Vibrissae , Animals , Interneurons/physiology , Mammals/metabolism , Mice , Perception , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/metabolism , Vibrissae/physiology
3.
Neuroscience ; 394: 23-29, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30342199

ABSTRACT

The perirhinal cortex (PRH) is considered a crucial cortical area for familiarity memory and electrophysiological studies have reported the presence of visual familiarity encoding neurons in PRH. However, recent evidence has questioned the existence of these neurons. Here, we used a visual task in which head-restrained mice were passively exposed to oriented gratings or natural images. Evoked potentials and single-unit recordings showed evoked responses to novelty in V1 under some conditions. However, the PRH showed no response modulation with respect to familiarity under a variety of different conditions or retention delays. These results indicate that the PRH does not contribute to familiarity/novelty encoding using passively exposed visual stimuli.


Subject(s)
Neurons/physiology , Pattern Recognition, Visual/physiology , Perirhinal Cortex/physiology , Recognition, Psychology/physiology , Animals , Discrimination, Psychological/physiology , Evoked Potentials, Visual , Female , Male , Mice, Inbred C57BL , Photic Stimulation , Visual Cortex/physiology
4.
Psychol Res ; 81(1): 191-203, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26486648

ABSTRACT

Theoretical models suggest that maintenance and updating are two functional states of working memory (WM), which are controlled by a gate between perceptual information and WM representations. Opening the gate enables updating WM with input, while closing it enables keeping the maintained information shielded from interference. However, it is still unclear when gate opening takes place, and what is the external signal that triggers it. A version of the AX-CPT paradigm was used to examine a recent proposal in the literature, suggesting that updating is triggered whenever the maintenance of the context is necessary for task performance (context-dependent tasks). In four experiments using this paradigm, we show that (1) a task-switching cost takes place in both context-dependent and context-independent trials; (2) task-switching is additive to the dependency effect, and (3) unlike switching cost, the dependency effect is not affected by preparation and, therefore, does not reflect context-updating. We suggest that WM updating is likely to be triggered by a simple mechanism that occurs in each trial of the task regardless of whether maintaining the context is needed or not. The implications for WM updating and its relationship to task-switching are discussed.


Subject(s)
Memory, Short-Term , Psychological Theory , Humans , Male , Psychomotor Performance
SELECTION OF CITATIONS
SEARCH DETAIL
...