Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Microbiol ; 22(4): 206-225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225365

ABSTRACT

The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Virus Replication , Biology
2.
Nat Commun ; 13(1): 5929, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207334

ABSTRACT

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Ferrets , Humans , Melphalan , Mice , Phenotype , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , gamma-Globulins
3.
Front Immunol ; 13: 889175, 2022.
Article in English | MEDLINE | ID: mdl-35967310

ABSTRACT

Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.


Subject(s)
Antigen Presentation , Monocytes , Animals , Antiviral Agents/metabolism , Biology , Cattle , Cell Differentiation , Humans
4.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Article in English | MEDLINE | ID: mdl-34320038

ABSTRACT

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Subject(s)
Acute Lung Injury/immunology , Acute Lung Injury/virology , Lung/immunology , Mesenchymal Stem Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Animals , Humans , Lung/cytology , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/immunology , Sheep
5.
Eur J Immunol ; 50(11): 1691-1711, 2020 11.
Article in English | MEDLINE | ID: mdl-32592404

ABSTRACT

Dendritic cells (DC) and monocytes are vital for the initiation of innate and adaptive immune responses. Recently, we identified bona fide DC subsets in blood of cattle, revealing subset- and species-specific transcription of toll-like receptors (TLR). In the present study, we analyzed phenotypic and transcriptional responses of bovine DC subsets and monocytes to in vitro stimulation with four to six different TLR ligands. Bovine DC subsets, especially plasmacytoid DC (pDC), showed a clear increase of CCR7, CD25, CD40, CD80, CD86, and MHC-II expression both on mRNA and protein level. Flow cytometric detection of p38 MAPK phosphorylation 15 min after stimulation confirmed activation of DC subsets and monocytes in accordance with TLR gene expression. Whole-transcriptome sequencing of sorted and TLR-stimulated subsets revealed potential ligand- and subset-specific regulation of genes associated with inflammation, T-cell co-stimulation, migration, metabolic reprogramming, and antiviral activity. Gardiquimod was found to evoke strong responses both in DC subsets and monocytes, while Poly(I:C) and CpG preferentially triggered responses in cDC1 and pDC, respectively. This in-depth analysis of ligand responsiveness is essential for the rational design of vaccine adjuvants in cattle, and provides a solid basis for comparative studies on DC and monocyte biology across species.


Subject(s)
Blood Cells/metabolism , Dendritic Cells/physiology , Monocytes/physiology , Toll-Like Receptors/metabolism , Transcriptome/physiology , Animals , Antigens, CD/metabolism , Blood Cells/physiology , Cattle , Cell Movement/physiology , Dendritic Cells/metabolism , Gene Expression Profiling/methods , Inflammation/metabolism , Inflammation/pathology , Ligands , Monocytes/metabolism
6.
Front Immunol ; 9: 2505, 2018.
Article in English | MEDLINE | ID: mdl-30425716

ABSTRACT

A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4-, cDC2 being Flt3+CD172a+CD13-CD4-, pDC being Flt3+CD172adimCD13-CD4+, and monocytes being Flt3-CD172ahighCD13-CD4-. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16-) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for "marker molecules" that-when targeted by flow cytometry-will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.


Subject(s)
Dendritic Cells/physiology , Monocytes/physiology , Transcription, Genetic/physiology , Animals , Antigen Presentation/physiology , Antigens, CD/metabolism , Biomarkers/metabolism , Cattle , Dendritic Cells/metabolism , Flow Cytometry/methods , Humans , Mice , Monocytes/metabolism , Phenotype , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...