Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Bone ; 175: 116849, 2023 10.
Article in English | MEDLINE | ID: mdl-37487860

ABSTRACT

Hypophosphatasia (HPP) is characterized by severe skeletal symptoms including mineralization defects, insufficiency fractures, and delayed facture healing or non-unions. HPP is caused by mutations of the tissue non-specific alkaline phosphatase (TNSALP). Zinc is a cofactor of TNSALP and vitamin D an important regulator of bone matrix mineralization. Data from this retrospective study indicates that deficiencies in zinc or vitamin D occur in HPP patients with a similar frequency as in the general population. While guidelines for repletion of these micronutrients have been established for the general population, the transferability of the efficacy and safety of these regiments to HPP patients still needed to be determined. We filtered for variant classification (ACMG 3-5, non-benign) and data completeness from a total cohort of 263 HPP patients. 73.5 % of this sub-cohort were vitamin D deficient while 27.2 % were zinc deficient. We retrospectively evaluated the effect of supplementation according to general guidelines in 10 patients with zinc-deficiency and 38 patients with vitamin d-deficiency. The treatments significantly raised serum zinc or vitamin D levels respectively. All other assessed disease markers (alkaline phosphatase, pyrodoxal-5-phosphate) or bone turnover markers (phosphate, calcium, parathyroid hormone, bone specific alkaline phosphatase, creatinine, desoxypyridinoline) remained unchanged. These results highlight that general guidelines for zinc and vitamin D repletion can be successfully applied to HPP patients in order to prevent deficiency symptoms without exacerbating the disease burden or causing adverse effects due to changes in bone and calcium homeostasis.


Subject(s)
Hypophosphatasia , Vitamin D Deficiency , Humans , Hypophosphatasia/diagnosis , Alkaline Phosphatase , Retrospective Studies , Zinc/therapeutic use , Calcium , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D/therapeutic use , Phosphates , Dietary Supplements
2.
Calcif Tissue Int ; 112(6): 691-703, 2023 06.
Article in English | MEDLINE | ID: mdl-37147467

ABSTRACT

Hypophosphatasia (HPP) is an inborn disease that causes a rare form of osteomalacia, a mineralization disorder affecting mineralized tissues. Identification of patients at high risk for fractures or other skeletal manifestations (such as insufficiency fractures or excessive bone marrow edema) by bone densitometry and laboratory tests remains clinically challenging. Therefore, we examined two cohorts of patients with variants in the ALPL gene grouped by bone manifestations. These groups were compared by means of bone microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT) and simulated mechanical performance utilizing finite element analysis (FEA). Whereas the incidence of skeletal manifestations among the patients could not be determined by dual energy X-ray absorptiometry (DXA) or laboratory assessment, HR-pQCT evaluation showed a distinct pattern of HPP patients with such manifestations. Specifically, these patients had a pronounced loss of trabecular bone mineral density, increased trabecular spacing, and decreased ultimate force at the distal radius. Interestingly, the derived results indicate that the non-weight-bearing radius is superior to the weight-bearing tibia in identifying deteriorated skeletal patterns. Overall, the assessment by HR-pQCT appears to be of high clinical relevance due to the improved identification of HPP patients with an increased risk for fractures or other skeletal manifestations, especially at the distal radius.


Subject(s)
Fractures, Stress , Hypophosphatasia , Humans , Absorptiometry, Photon/methods , Radius/diagnostic imaging , Finite Element Analysis , Bone Density , Tibia
3.
Calcif Tissue Int ; 112(3): 308-319, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36414794

ABSTRACT

Hypophosphatasia (HPP) is an inherited, systemic disorder, caused by loss-of-function variants of the ALPL gene encoding the enzyme tissue non-specific alkaline phosphatase (TNSALP). HPP is characterized by low serum TNSALP concentrations associated with defective bone mineralization and increased fracture risk. Dental manifestations have been reported as the exclusive feature (odontohypophosphatasia) and in combination with skeletal complications. Enzyme replacement therapy (asfotase alfa) has been shown to improve respiratory insufficiency and skeletal complications in HPP patients, while its effects on dental status have been understudied to date. In this study, quantitative backscattered electron imaging (qBEI) and histological analysis were performed on teeth from two patients with infantile HPP before and during asfotase alfa treatment and compared to matched healthy control teeth. qBEI and histological methods revealed varying mineralization patterns in cementum and dentin with lower mineralization in HPP. Furthermore, a significantly higher repair cementum thickness was observed in HPP compared to control teeth. Comparison before and during treatment showed minor improvements in mineralization and histological parameters in the patient when normalized to matched control teeth. HPP induces heterogeneous effects on mineralization and morphology of the dental status. Short treatment with asfotase alfa slightly affects mineralization in cementum and dentin. Despite HPP being a rare disease, its mild form occurs at higher prevalence. This study is of high clinical relevance as it expands our knowledge of HPP and dental involvement. Furthermore, it contributes to the understanding of dental tissue treatment, which has hardly been studied so far.


Subject(s)
Calcinosis , Hypophosphatasia , Tooth Demineralization , Humans , Hypophosphatasia/complications , Alkaline Phosphatase/genetics , Calcification, Physiologic , Calcinosis/complications , Tooth Demineralization/complications , Tooth Demineralization/drug therapy
4.
Osteoporos Int ; 33(10): 2177-2184, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35751664

ABSTRACT

This study examined the effects of denosumab compared to bisphosphonates and vitamin D alone on muscle performance in patients with low BMD. While grip force improved in both the denosumab and bisphosphonate group, a superior increase in chair rising test force was observed in the denosumab group. INTRODUCTION: The aim of this study was to investigate the effect of the anti-resorptive agent denosumab (Dmab) on upper and lower limb muscle performance compared to bisphosphonate (BP) treatment and vitamin D supplementation alone (i.e., basic therapy) in patients with low BMD. METHODS: This retrospective, propensity score-matched (sex, age, BMI, follow-up time) cohort study included 150 osteopenic or osteoporotic patients receiving basic (n = 60), BP (n = 30) or Dmab (n = 60) therapy. All patients underwent a musculoskeletal assessment at baseline and follow-up, including DXA, laboratory bone metabolism parameters, grip force, and chair rising test mechanography. Mean annual percentage changes were calculated and compared between study groups. RESULTS: After a mean follow-up period of 17.6 ± 9.0 months, a significantly higher increase in grip force in both the Dmab (p < 0.001) and BP group (p = 0.001) compared to the vitamin D group was observed (vitamin D = - 6.1 ± 10.2%; BP = + 0.8 ± 8.2%; Dmab = + 5.1 ± 25.5%). The Dmab group showed a significantly higher increase in chair rising test force compared to the BP group (vitamin D = + 5.8 ± 12.7%; BP = + 0.9 ± 8.6%; Dmab = + 8.2 ± 14.4%; Dmab vs. BP p = 0.03). Neither the changes in BMD nor in bone metabolic parameters were associated with changes in muscle performance. CONCLUSION: Dmab resulted in increased muscle strength in the upper and lower limbs, indicating systemic rather than site-specific effects as compared to BP. Based on these findings, Dmab might be favored over other osteoporosis treatments in patients with low BMD and poor muscle strength.


Subject(s)
Bone Density Conservation Agents , Denosumab , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Cohort Studies , Denosumab/pharmacology , Denosumab/therapeutic use , Diphosphonates , Humans , Muscles , Propensity Score , Retrospective Studies , Vitamin D/pharmacology , Vitamin D/therapeutic use
5.
J Clin Endocrinol Metab ; 107(7): e3048-e3057, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35276006

ABSTRACT

CONTEXT: Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE: We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS: Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS: In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION: The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.


Subject(s)
Osteogenesis Imperfecta , Osteoporosis , Spinal Fractures , Adult , Bone Density/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/genetics , Osteoporosis/diagnosis , Osteoporosis/genetics
6.
Thromb Haemost ; 122(5): 692-702, 2022 May.
Article in English | MEDLINE | ID: mdl-34587640

ABSTRACT

Low bone mineral density (BMD) is common in patients with hemophilia (PWHs). The aim of the present study was to describe BMD and microarchitecture in PWHs in Northern Germany and to determine factors contributing to possible skeletal alterations. Demographic characteristics, BMD and microarchitecture, bone metabolism markers, and orthopaedic joint score (OJS) were assessed during routine check-ups. Areal BMD was assessed by dual-energy X-ray absorptiometry (DXA) at the hip and lumbar spine. Volumetric BMD and microarchitecture were quantified by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Eighty male PWHs (median age, 33 years; range, 18-77) were retrospectively analyzed, of whom 67 (84.0%) and 13 (16.0%) had hemophilia A and B, respectively. Fifty-four (68.0%), six (7.0%), and 20 (25.0%) patients had severe, moderate, or mild hemophilia, and 35 (44.0%) were hepatitis C virus (HCV) positive. DXA analysis revealed low BMD (Z-score ≤ - 2.0) in 27.5% of PWHs, and higher bone turnover values were associated with lower BMD. Bone microarchitecture was dominated by cortical deficits at the radius and trabecular deficits at the tibia. Cortical deficits at the radius were influenced by lower body mass index, low-grade inflammation, and treatment regimen (higher cortical thickness on primary prophylaxis). Trabecular alterations at the tibia were mainly associated with OJS and HCV status. A positive effect of self-reported sportive activity on BMD could be shown. In conclusion, our findings demonstrate that the site-specific microarchitectural deficit observed in PWHs is primarily negatively influenced by poor joint status, inflammation, HCV infection, and high bone turnover.


Subject(s)
Hemophilia A , Hepatitis C , Joint Diseases , Adult , Bone Density , Exercise , Hemophilia A/complications , Hepatitis C/complications , Humans , Inflammation , Joint Diseases/etiology , Male , Retrospective Studies
7.
Orphanet J Rare Dis ; 16(1): 452, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711245

ABSTRACT

BACKGROUND: Tissue-nonspecific alkaline phosphatase (TNSALP) encoded by the ALPL gene is of particular importance for bone mineralization. Mutation in the ALPL gene can lead to persistent low ALP activity resulting in the rare disease Hypophosphatasia (HPP) that is characterized by disturbed bone and dental mineralization. While severe forms are extremely rare with an estimated prevalence of 1/100.000, recent studies suggest that moderate form caused by heterozygous mutations are much more frequent with an estimated prevalence of 1/508. The purpose of this study was to estimate the prevalence of low AP levels in the population based on laboratory measurements. METHODS: In this study, the prevalence of low AP activity and elevated pyridoxal-5-phosphate (PLP) levels was analyzed in 6.918.126 measurements from 2011 to 2016 at a single laboratory in northern Germany. Only laboratory values of subjects older than 18 years of age were included. Only the first measurement was included, all repeated values were excluded. RESULTS: In total, 8.46% of the measurements of a total of 6.918.126 values showed a value < 30 U/L. 0.59% of the subjects with an ALP activity below 30 U/L had an additional PLP measurement. Here, 6.09% showed elevated pyridoxal-5-phosphate (PLP) levels. This suggest that 0.52% (1:194) of subjects show laboratory signs of HPP. CONCLUSION: These data support the genetic estimation that the prevalence of moderate forms of HPP may be significantly higher than expected. Based on these data, we recommend automatically measurement of PLP in the case of low ALP activity and a notification to the ordering physician that HPP should be included in the differential diagnosis and further exploration is recommended.


Subject(s)
Hypophosphatasia , Alkaline Phosphatase , Humans , Hypophosphatasia/diagnosis , Hypophosphatasia/epidemiology , Hypophosphatasia/genetics , Laboratories , Prevalence , Pyridoxal Phosphate
8.
Bone ; 147: 115911, 2021 06.
Article in English | MEDLINE | ID: mdl-33716164

ABSTRACT

Pregnancy and lactation-associated osteoporosis (PLO) is a rare skeletal disorder characterized by early-onset osteoporosis typically manifestating with vertebral compression fractures or transient osteoporosis of the hip. We hypothesized that genetic variants may play a role in the development of PLO. This study aimed to analyze the presence of genetic variants and a potential association with the clinical presentation in PLO. 42 women with PLO were included from 2013 to 2019 in a multicenter study in Germany. All cases underwent comprehensive genetic analysis based on a custom-designed gene panel including genes relevant for skeletal disorders. The skeletal status was assessed using dual-energy X-ray absorptiometry (DXA). Subgroups were further analyzed by serum bone turnover markers (n = 31) and high-resolution peripheral computed tomography (HR-pQCT; n = 23). We detected relevant genetic variants in 21 women (50%), with LRP5, WNT1 and COL1A1/A2 being the most commonly involved genes. The mean number of vertebral compression fractures was 3.3 ± 3.4 per case with a significantly higher occurrence in the subgroup with genetic variants (4.8 ± 3.7 vs. 1.8 ± 2.3, p = 0.02). Among the total cohort, DXA Z-scores were significantly lower at the lumbar spine compared to the femoral neck (p = 0.002). HR-pQCT revealed a pronounced reduction of trabecular and cortical thickness, while trabecular number was within the reference range. Eighteen women (43%) received a bone-specific therapy (primarily teriparatide). Overall, a steep increase in bone mass (+37.7%) was observed after 3 years. In conclusion, pregnancy and lactation represent skeletal risk factors, which may unmask hereditary bone disorders leading to PLO. These cases were affected more severely. Nevertheless, a timely diagnosis and adequate treatment can ensure a substantial recovery potential even without specific therapy. Patients with genetically induced low bone turnover (e.g.; LRP5, WNT1) may especially benefit from osteo-anabolic medication.


Subject(s)
Fractures, Compression , Osteoporosis , Spinal Fractures , Absorptiometry, Photon , Bone Density/genetics , Female , Germany , Humans , Lactation , Osteoporosis/genetics , Pregnancy , Spinal Fractures/diagnostic imaging , Spinal Fractures/genetics
9.
J Bone Miner Res ; 36(7): 1316-1325, 2021 07.
Article in English | MEDLINE | ID: mdl-33724539

ABSTRACT

In patients with autoimmune hepatitis (AIH), osteoporosis represents a common extrahepatic complication, which we recently showed by an assessment of areal bone mineral density (aBMD) via dual-energy x-ray absorptiometry (DXA). However, it is well established that bone quality and fracture risk does not solely depend on aBMD, but also on bone microarchitecture. It is currently not known whether AIH patients exhibit a site-specific or compartment-specific deterioration in the skeletal microarchitecture. In order to assess potential geometric, volumetric, and microarchitectural changes, high-resolution peripheral quantitative computed tomography (HR-pQCT) measurements were performed at the distal radius and distal tibia in female patients with AIH (n = 51) and compared to age-matched female healthy controls (n = 32) as well as to female patients with AIH/primary biliary cholangitis (PBC) overlap syndrome (n = 25) and female patients with PBC alone (PBC, n = 36). DXA at the lumbar spine and hip, clinical characteristics, transient elastography (FibroScan) and laboratory analyses were also included in this analysis. AIH patients showed a predominant reduction of cortical thickness (Ct.Th) in the distal radius and tibia compared to healthy controls (p < .0001 and p = .003, respectively). In contrast, trabecular parameters such as bone volume fraction (BV/TV) did not differ significantly at the distal radius (p = .453) or tibia (p = .508). Linear regression models revealed significant negative associations between age and Ct.Th (95% confidence interval [CI], -14 to -5 µm/year, p < .0001), but not between liver stiffness, cumulative prednisolone dose (even after an adjustment for age), or disease duration with bone microarchitecture. The duration of high-dose prednisolone (≥7.5 mg) was negatively associated with trabecular thickness (Tb.Th) at the distal radius. No differences in bone microarchitecture parameters between AIH, AIH/PBC, and PBC could be detected. In conclusion, AIH patients showed a severe age-dependent deterioration of the cortical bone microarchitecture, which is most likely the major contribution to the observed increased fracture risk in these patients. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Carpal Bones , Hepatitis, Autoimmune , Absorptiometry, Photon , Bone Density , Female , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/diagnostic imaging , Humans , Radius/diagnostic imaging , Tibia
10.
Calcif Tissue Int ; 108(2): 219-230, 2021 02.
Article in English | MEDLINE | ID: mdl-33064170

ABSTRACT

Methotrexate (MTX) is one of the most commonly prescribed drugs for autoimmune rheumatic diseases. As there is no consensus on its negative effects on bone, the purpose of this investigation was to determine the clinical spectrum of patients with stress fractures due to long-term MTX treatment (i.e., MTX osteopathy). We have retrospectively analyzed data from 34 patients with MTX treatment, severe lower extremity pain and immobilization. MRI scans, bone turnover markers, bone mineral density (DXA) and bone microarchitecture (HR-pQCT) were evaluated. Stress fractures were also imaged with cone beam CT. While the time between clinical onset and diagnosis was prolonged (17.4 ± 8.6 months), the stress fractures had a pathognomonic appearance (i.e., band-/meander-shaped, along the growth plate) and were diagnosed in the distal tibia (53%), the calcaneus (53%), around the knee (62%) and at multiple sites (68%). Skeletal deterioration was expressed by osteoporosis (62%) along with dissociation of low bone formation and increased bone resorption. MTX treatment was discontinued in 27/34 patients, and a combined denosumab-teriparatide treatment initiated. Ten patients re-evaluated at follow-up (2.6 ± 1.5 years) had improved clinically in terms of successful remobilization. Taken together, our findings provide the first in-depth skeletal characterization of patients with pathognomonic stress fractures after long-term MTX treatment.


Subject(s)
Bone Density , Fractures, Stress , Methotrexate/adverse effects , Denosumab/therapeutic use , Fractures, Stress/chemically induced , Fractures, Stress/diagnostic imaging , Humans , Retrospective Studies , Teriparatide/therapeutic use
11.
J Bone Miner Res ; 36(2): 271-282, 2021 02.
Article in English | MEDLINE | ID: mdl-33118644

ABSTRACT

Reduced bone mineral density (BMD; ie, Z-score ≤-2.0) occurring at a young age (ie, premenopausal women and men <50 years) in the absence of secondary osteoporosis is considered early-onset osteoporosis (EOOP). Mutations affecting the WNT signaling pathway are of special interest because of their key role in bone mass regulation. Here, we analyzed the effects of relevant LRP5 and LRP6 variants on the clinical phenotype, bone turnover, BMD, and bone microarchitecture. After exclusion of secondary osteoporosis, EOOP patients (n = 372) were genotyped by gene panel sequencing, and segregation analysis of variants in LRP5/LRP6 was performed. The clinical assessment included the evaluation of bone turnover parameters, BMD by dual-energy X-ray absorptiometry, and microarchitecture via high-resolution peripheral quantitative computed tomography (HR-pQCT). In 50 individuals (31 EOOP index patients, 19 family members), relevant variants affecting LRP5 or LRP6 were detected (42 LRP5 and 8 LRP6 variants), including 10 novel variants. Seventeen variants were classified as disease causing, 14 were variants of unknown significance, and 19 were BMD-associated single-nucleotide polymorphisms (SNPs). One patient harbored compound heterozygous LRP5 mutations causing osteoporosis-pseudoglioma syndrome. Fractures were reported in 37 of 50 individuals, consisting of vertebral (18 of 50) and peripheral (29 of 50) fractures. Low bone formation was revealed in all individuals. A Z-score ≤-2.0 was detected in 31 of 50 individuals, and values at the spine were significantly lower than those at the hip (-2.1 ± 1.3 versus -1.6 ± 0.8; p = .003). HR-pQCT analysis (n = 34) showed impaired microarchitecture in trabecular and cortical compartments. Significant differences regarding the clinical phenotype were detectable between index patients and family members but not between different variant classes. Relevant variants in LRP5 and LRP6 contribute to EOOP in a substantial number of individuals, leading to a high number of fractures, low bone formation, reduced Z-scores, and impaired microarchitecture. This detailed skeletal characterization improves the interpretation of known and novel LRP5 and LRP6 variants. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5 , Osteoporosis , Bone Density/genetics , Female , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Male , Middle Aged , Osteoporosis/genetics , Phenotype , Spine
12.
Bone ; 143: 115794, 2021 02.
Article in English | MEDLINE | ID: mdl-33301963

ABSTRACT

Hypophosphatasia (HPP) is a hereditary musculoskeletal disorder caused by inactivating variants in the ALPL gene and subsequently reduced serum tissue-nonspecific alkaline phosphatase (TNSALP) activity. This inborn error of metabolism results in decreased bone quality, accumulations of osteoid, and reduced bone mineralization. Increased incidence of fractures and prolonged bone healing are characteristic features for HPP. Available enzyme replacement therapy (asfotase alfa), was reported to recover bone mineralization and bone quality in adult HPP patients. Moreover, it was shown that asfotase alfa improved fracture healing of former nonunions in two adult HPP patients. We hypothesized that the nonunions are filled partially with osteoid, offering great potential to benefit from the treatment with asfotase alfa to promote bone healing. In the present study, we report three adult patients with pediatric-onset HPP and detected ALPL-mutations with prolonged bone healing after arthrodesis, tibial stress fracture, and osteotomy. After the initiation of asfotase alfa, immediately increased levels of alkaline phosphatase (ALP) and bone-specific ALP, as well as decreased levels of pyridoxal-5-phosphate (PLP), were detected in biochemical analysis. Importantly, even after up to 5 years of non-healing, a progredient consolidation was shown, assessed by a custom three-dimensional evaluation of repeated cone-beam computed tomography (CBCT) images, characterized by rapidly increasing levels of bone volume per tissue volume (BV/TV) within the volume of interest (i.e., the region of the non-healing bone). These radiographical findings were in line with the reported restoration of functional ability and pain-free full weight-bearing, as well as increased neuromuscular parameters (e.g., improved muscle strength). Taken together, our findings indicate that asfotase alfa improves the osseous consolidation of nonunions likely due to re-mineralization of osteoid tissue filling the former gap and improving the functional ability in adult HPP patients, characterized by increasing levels of BV/TV assessed via an innovative three-dimensional evaluation of CBCT images.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Adult , Child , Humans , Hypophosphatasia/diagnostic imaging , Hypophosphatasia/drug therapy , Immunoglobulin G , Recombinant Fusion Proteins
13.
Knee Surg Sports Traumatol Arthrosc ; 29(5): 1644-1650, 2021 May.
Article in English | MEDLINE | ID: mdl-32968845

ABSTRACT

PURPOSE: Medial tibial stress syndrome (MTSS) represents a common diagnosis in individuals exposed to repetitive high-stress loads affecting the lower limb, e.g., high-performance athletes. However, the diagnostic approach and therapeutic regimens are not well established. METHODS: Nine patients, diagnosed as MTSS, were analyzed by a comprehensive skeletal analysis including laboratory bone turnover parameters, dual-energy X-Ray absorptiometry (DXA), and high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS: In 4/9 patients, bilateral pseudofractures were detected in the mid-shaft tibia. These patients had significantly lower levels of 25-hydroxycholecalciferol compared to patients with MTSS but similar levels of bone turnover parameters. Interestingly, the skeletal assessment revealed significantly higher bone mineral density (BMD) Z-scores at the hip (1.3 ± 0.6 vs. - 0.7 ± 0.5, p = 0.013) in patients with pseudofractures and a trend towards higher bone microarchitecture parameters measured by HR-pQCT at the distal tibia. Vitamin D supplementation restored the calcium-homeostasis in all patients. Combined with weight-bearing as tolerated, pseudofractures healed in all patients and return to competition was achieved. CONCLUSION: In conclusion, deficient vitamin D levels may lead to pseudofractures due to localized deterioration of mineralization, representing a pivotal component of MTSS in athletes with increased repetitive mechanical loading of the lower limbs. Moreover, the manifestation of pseudofractures is not a consequence of an altered BMD nor microarchitecture but appears in patients with exercise-induced BMD increase in combination with reduced 25-OH-D levels. The screening of MTSS patients for pseudofractures is crucial for the initiation of an appropriate treatment such as vitamin D supplementation to prevent a prolonged course of healing or recurrence. LEVEL OF EVIDENCE: III.


Subject(s)
Athletic Injuries/pathology , Medial Tibial Stress Syndrome/pathology , 25-Hydroxyvitamin D 2/blood , Absorptiometry, Photon , Adult , Athletic Injuries/diagnostic imaging , Athletic Injuries/metabolism , Athletic Injuries/therapy , Bone Density , Bone Remodeling , Calcium/metabolism , Dietary Supplements , Female , Humans , Male , Medial Tibial Stress Syndrome/diagnostic imaging , Medial Tibial Stress Syndrome/metabolism , Medial Tibial Stress Syndrome/therapy , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tibia/metabolism , Tibia/pathology , Tomography, X-Ray Computed , Vitamin D/administration & dosage , Weight-Bearing , Young Adult
14.
Calcif Tissue Int ; 108(3): 288-301, 2021 03.
Article in English | MEDLINE | ID: mdl-33191482

ABSTRACT

Hypophosphatasia (HPP) is a rare inborn error of metabolism due to a decreased activity of tissue nonspecific alkaline phosphatase (TNSALP). As the onset and severity of HPP are heterogenous, it can be challenging to determine the pathogenicity of detected rare ALPL variants in symptomatic patients. We aimed to characterize patients with rare ALPL variants to propose which patients can be diagnosed with adult HPP. We included 72 patients with (1) clinical symptoms of adult HPP or positive family history and (2) low TNSALP activity and/or high pyridoxal 5'-phosphate (PLP) levels, who underwent ALPL gene sequencing. The patients were analyzed and divided into three groups depending on ALPL variant pathogenicity according to the classification of the American College of Medical Genetics and Genomics (ACMG). Reported pathogenic (n = 34 patients), rare (n = 17) and common (n = 21) ALPL variants only were found. Muscular complaints were the most frequent symptoms (> 80%), followed by bone affection (> 50%). Tooth involvement was significantly more common in patients with pathogenic or rare ALPL variants. Seven rare variants could be classified as likely pathogenic (ACMG class 4) of which five have not yet been described. Inconclusive genetic findings and less specific symptoms make diagnosis difficult in cases where adult HPP is not obvious. As not every pathogenic or rare ALPL variant leads to a manifestation of HPP, only patients with bone complications and at least one additional complication concerning teeth, muscle, central nervous and mental system, repeated low TNSALP activity and high PLP levels should be diagnosed as adult HPP if rare ALPL gene variants of ACMG class 4 or higher support the diagnosis.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Adult , Aged , Alkaline Phosphatase/genetics , Bone and Bones/pathology , Female , Genetic Association Studies , Humans , Hypophosphatasia/genetics , Hypophosphatasia/pathology , Male , Middle Aged , Muscles/physiology , Mutation
15.
Calcif Tissue Int ; 106(5): 465-475, 2020 05.
Article in English | MEDLINE | ID: mdl-31989186

ABSTRACT

Hereditary hemochromatosis (HHC) is characterized by excessive intestinal iron absorption resulting in a pathological increase of iron levels. Parenchyma damage may be a consequence of iron deposition in affected organs (e.g., liver, pancreas, gonads) as well as bones and joints, leading to osteoporosis with increased fracture risk and arthropathy. Up to date, it is not known whether HHC can also be considered as a risk factor for osteonecrosis. Likewise, the underlying skeletal changes are unknown regarding, e.g., microstructural properties of bone. We aimed to study the spectrum of skeletal complications in HHC and the possible underlying microarchitectural changes. Therefore, we retrospectively analyzed all patients with HHC (n = 10) presenting in our outpatient clinic for bone diseases. In addition to dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT) was performed and bone turnover markers, 25-OH-D3, ferritin and transferrin saturation were measured. Cortical volumetric bone mineral density (Ct.BMD) and cortical thickness (Ct.Th) were reduced, whereas trabecular microstructure (Tb.Th) and volumetric bone mineral density (Tb.BMD) were preserved compared to age- and gender-adjusted reference values from the literature. Interestingly, the occurrence of bone complications was age dependent; while younger patients presented with osteonecroses or transient bone marrow edema, patients older than 65 years presented with fractures. Our study provides first insights into altered bone microarchitecture in HHC and sheds new light on the occurrence of osteonecrosis. If available, HR-pQCT is a useful complement to fracture risk assessment and to determine microstructural deterioration and volumetric bone mineralization deficits.


Subject(s)
Bone Density , Bone and Bones/pathology , Hemochromatosis/complications , Osteonecrosis/pathology , Absorptiometry, Photon , Age Factors , Aged , Fractures, Bone/etiology , Fractures, Bone/pathology , Hemochromatosis/pathology , Humans , Osteonecrosis/etiology , Retrospective Studies
16.
Clin Gastroenterol Hepatol ; 18(1): 226-233.e3, 2020 01.
Article in English | MEDLINE | ID: mdl-31163277

ABSTRACT

BACKGROUND & AIMS: Osteoporosis is a feared complication of autoimmune hepatitis (AIH), but bone disease has not been well studied in these patients. We aimed to identify specific risk factors for osteoporosis in patients with AIH and to develop a scoring system that could be used to identify patients with increased risk of osteoporosis. METHODS: We performed a retrospective cross-sectional study of 211 patients (mean age, 56.8 years; 79.1% women) in Germany with a diagnosis of AIH from 2012 through 2017 and an indication for assessment of bone mineral status. The patients underwent bone mineral density measurements by dual energy X-ray absorptiometry. A subgroup of 99 patients underwent a second measurement. We used logistic regression to identify patient and clinical factors associated with the presence of osteoporosis. We developed a weighted sum score for estimating risk of osteoporosis and tested it in development (n = 141) and validation (n = 70) sets of patients. RESULTS: According to dual energy X-ray absorptiometry measurements, 15.6% of patients had osteoporosis 42.9% were in the range for osteopenia. The prevalence of osteoporosis in patients 50 years or older was 19.2%. Univariate and logistic regression analyses showed that age older than 54 years, duration of glucocorticoid use >90 months, body mass index <23 kg/m2 and transient elastography values >8 kPA increased risk of osteoporosis 13.8-fold, 6.2-fold, 5.9-fold, and 3.0-fold, respectively. Based on these factors, we developed an index that identified patients at low-, moderate-, and high-risk of osteoporosis with an area under the curve of 0.811. Of the patients with a second osteodensitometry measurement, the rate of bone loss progression ranged from 2.7% after 1 year to 8.4% after 7 years (mean bone loss, 1.2% per year). CONCLUSIONS: Almost 20% of patients with AIH older than 50 years have osteoporosis. Older age, duration of corticosteroid use, low body mass index, and liver fibrosis are independent risk factors for bone loss.


Subject(s)
Hepatitis, Autoimmune/complications , Osteoporosis/diagnostic imaging , Severity of Illness Index , Absorptiometry, Photon , Adolescent , Adult , Aged , Aged, 80 and over , Bone Density , Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/etiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Osteoporosis/etiology , Retrospective Studies , Risk Factors , Young Adult
17.
J Bone Oncol ; 18: 100256, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31497501

ABSTRACT

Osteoid osteoma (OO) is a benign bone tumor producing non-mineralized bone matrix (i.e., osteoid). While peritumoral edema is commonly found in OO, extensive bone marrow edema has been reported less frequently. Furthermore, the micro-morphological characteristics of the nidus and its central calcification remain unclear. In this study, a consecutive series of four patients suffering from extensive bone marrow edema triggered by intra-articular osteoid osteoma underwent clinical examination, magnetic resonance imaging (MRI) and computed tomography (CT) as well as dual-energy X-ray absorptiometry (DXA) and laboratory bone turnover analyses. The obtained resection specimens were processed by undecalcified histology and were subsequently analyzed by light microscopy and quantitative backscattered electron imaging (qBEI). We report an entity of intra-articular osteoid osteoma in the knee and foot, in which an extensive and persistent bone marrow edema syndrome masked the correct diagnosis. While metabolic bone diseases were excluded in all cases, the reassessment of the patients' clinical history including pain characteristics (nocturnal, aspirin sensitivity) led us to perform additional CT, where the tumor was diagnosed. The micro-morphological analysis of the OO biopsies revealed that the nidus was surrounded by hyperosteoidosis, while central mineralization was detected in all cases. This mineralized area showed a significantly higher mineralization heterogeneity than the surrounding trabecular bone and more disorganized collagen fibers detected by qBEI and polarized light microscopy, respectively. Taken together, our results indicate that osteoid osteoma should be considered when persistent and extensive, peri-articular bone marrow edema is diagnosed. The central calcification that is found inside the nidus in conventional imaging was mirrored by bone matrix with a heterogeneous mineralization pattern.

18.
JBMR Plus ; 3(8): e10215, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31485555

ABSTRACT

The response to teriparatide has been described in very few cases of hypophosphatasia (HPP). In this cross-sectional study, we report the prevalence of symptomatic bone marrow edema (BME) and fracture healing complications in a large cohort of childhood and adult HPP patients and discuss the results of teriparatide treatment in four cases. From 2016 to 2018, 51 patients with a diagnosis of HPP were seen at our institution. The diagnosis of HPP was established by low serum alkaline phosphatase (ALP), elevated serum pyridoxal-5-phosphate (PLP), at least one typical clinical symptom of HPP and supported by ALPL mutation analysis. In this study cohort, 28 (56%) and 14 (27%) patients had a history of fracture or a history of BME, respectively. Four patients, including middle-aged to elderly women and men who all presented with persistent symptomatic BME or fracture healing complications, were treated with teriparatide. DXA was performed prior to treatment and laboratory values were measured on a regular basis during treatment. Treatment with teriparatide showed variable effects in terms of clinical and biochemical response. Although all four patients displayed a temporary increase in ALP activity, only two patients with a mild form of adult HPP and moderately increased PLP levels showed definite clinical and radiological improvement after teriparatide treatment. In conclusion, fracture healing complications and BME occur frequently in HPP patients. Teriparatide shows variable clinical and biochemical effects depending on the severity of the disease. PLP levels and the number of ALPL alleles might be good parameters to predict treatment outcomes. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

19.
Bone ; 127: 67-74, 2019 10.
Article in English | MEDLINE | ID: mdl-31152801

ABSTRACT

Hypophosphatasia (HPP) is a hereditary musculoskeletal disorder characterized by low serum alkaline phosphatase (ALP) activity leading to poor bone mineralization. On a micro-morphological level, this may not only be reflected by an enrichment of osteoid but also a degradation of bone quality. Asfotase alfa is an enzyme replacement therapy that was recently demonstrated to improve bone mineralization as well as clinical status (e.g. growth, muscle strength and quality of life). However, the underlying changes of bone quality parameters on asfotase alfa treatment are currently not known. In the present study, we report a 24-year-old woman with genetically confirmed infantile-onset HPP and recurrent fractures. While the initiated asfotase alfa treatment was followed by rapid clinical improvements (i.e., disappearance of bone marrow edema, increase of muscle strength), the BMD assessed by DXA at the hip and spine increased moderately at two years follow-up. A detailed skeletal assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) and a high-resolution analysis of two consecutive iliac crest bone biopsies revealed only minor improvements of bone microarchitecture but a remarkable reduction of osteoid parameters. Furthermore, the high mineralization heterogeneity at baseline assessed by quantitative backscattered electron imaging (qBEI) decreased after 2 year of asfotase alfa treatment. Finally, we found an increase in mineral maturation reflected by higher mineral-to-matrix and carbonate-to-phosphate ratios using Fourier transform infrared spectroscopy (FTIR) imaging as well as increased local mechanical properties using reference point indentation (RPI). Taken together, our findings provide evidence for an improvement of bone quality indices beyond the mere reduction of osteoid indices and thereby contribute to the understanding of fracture risk reduction in HPP patients on asfotase alfa treatment.


Subject(s)
Alkaline Phosphatase/therapeutic use , Calcification, Physiologic , Hypophosphatasia/drug therapy , Hypophosphatasia/physiopathology , Immunoglobulin G/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Absorptiometry, Photon , Adult , Alkaline Phosphatase/pharmacology , Calcification, Physiologic/drug effects , Female , Humans , Hypophosphatasia/diagnostic imaging , Immunoglobulin G/pharmacology , Recombinant Fusion Proteins/pharmacology , Spectroscopy, Fourier Transform Infrared , Tomography, X-Ray Computed
20.
J Hepatol ; 70(5): 941-953, 2019 05.
Article in English | MEDLINE | ID: mdl-30641095

ABSTRACT

BACKGROUND & AIMS: Osteoporotic fractures are a major cause of morbidity and reduced quality of life in patients with primary sclerosing cholangitis (PSC), a progressive bile duct disease of unknown origin. Although it is generally assumed that this pathology is a consequence of impaired calcium homeostasis and malabsorption, the cellular and molecular causes of PSC-associated osteoporosis are unknown. METHODS: We determined bone mineral density by dual-X-ray absorptiometry and assessed bone microstructure by high-resolution peripheral quantitative computed tomography in patients with PSC. Laboratory markers of liver and bone metabolism were measured, and liver stiffness was assessed by FibroScan. We determined the frequency of Th17 cells by the ex vivo stimulation of peripheral blood mononuclear cells in a subgroup of 40 patients with PSC. To investigate the potential involvement of IL-17 in PSC-associated bone loss, we analyzed the skeletal phenotype of mice lacking Abcb4 and/or Il-17. RESULTS: Unlike in patients with primary biliary cholangitis, bone loss in patients with PSC was not associated with disease duration or liver fibrosis. However, we observed a significant negative correlation between the bone resorption biomarker deoxypyridinoline and bone mineral density in the PSC cohort, indicating increased bone resorption. Importantly, the frequency of Th17 cells in peripheral blood was positively correlated with the urinary deoxypyridinoline level and negatively correlated with bone mass. We observed that Abcb4-deficient mice displayed a low-bone-mass phenotype, which was corrected by an additional Il-17 deficiency or anti-IL-17 treatment, whereas the liver pathology was unaffected. CONCLUSIONS: Our findings demonstrate that an increased frequency of Th17 cells is associated with bone resorption in PSC. Whether antibody-based IL-17 blockade is beneficial against bone loss in patients with PSC should be addressed in future studies. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is a cholestatic liver disease characterized by progressive bile duct destruction. One serious complication of PSC is reduced bone mass resulting in increased fracture risk. Herein, we demonstrate that Th17 cells mediate bone loss in PSC by inducing bone resorption, which suggests that antibody-based IL-17 blockade might be beneficial for the treatment of bone loss in affected patients.


Subject(s)
Bone Density , Cholangitis, Sclerosing/complications , Osteoporosis/etiology , Th17 Cells/physiology , ATP Binding Cassette Transporter, Subfamily B/physiology , Absorptiometry, Photon , Adult , Aged , Animals , Bone Resorption/etiology , Female , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Osteoporosis/drug therapy , ATP-Binding Cassette Sub-Family B Member 4
SELECTION OF CITATIONS
SEARCH DETAIL
...