Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Mater ; 18(6): 573-579, 2019 06.
Article in English | MEDLINE | ID: mdl-31061485

ABSTRACT

Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous-wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation on the electron's wavefunction. Here, we show that femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam. The vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy. This method offers a high degree of scalability to small length scales and a highly efficient manipulation of the electron vorticity with attosecond precision. Besides the direct implications in the investigation of nanoscale ultrafast processes in which chirality plays a major role, we further discuss the perspectives of using this technique to shape the wavefunction of charged composite particles, such as protons, and how it can be used to probe their internal structure.

2.
Nat Commun ; 10(1): 1069, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824703

ABSTRACT

The authors became aware of a mistake in the original version of this Article. Specifically, an extra factor γ was incorrectly included in a number of mathematical equations and expressions. As a result of this, a number of changes have been made to both the PDF and the HTML versions of the Article. A full list of these changes is available online.

3.
Nat Commun ; 9(1): 2694, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30002367

ABSTRACT

Light-electron interaction is the seminal ingredient in free-electron lasers and dynamical investigation of matter. Pushing the coherent control of electrons by light to the attosecond timescale and below would enable unprecedented applications in quantum circuits and exploration of electronic motions and nuclear phenomena. Here we demonstrate attosecond coherent manipulation of a free-electron wave function, and show that it can be pushed down to the zeptosecond regime. We make a relativistic single-electron wavepacket interact in free-space with a semi-infinite light field generated by two light pulses reflected from a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting electron-state coherent oscillations are mapped in energy-momentum space via momentum-resolved ultrafast electron spectroscopy. The experimental results are in full agreement with our analytical theory, which predicts access to the zeptosecond timescale by adopting semi-infinite X-ray pulses.

4.
Sci Rep ; 8(1): 6709, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712937

ABSTRACT

Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56Fe and 28Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56Fe ion sensitive sites, but not those affected by X ray or 28Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.


Subject(s)
Cosmic Radiation/adverse effects , DNA Methylation/radiation effects , Epigenomics , Lung Neoplasms/genetics , Astronauts , Bronchi/pathology , Bronchi/radiation effects , DNA Methylation/genetics , Epithelial Cells/radiation effects , Humans , Linear Energy Transfer , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Space Flight , X-Rays
5.
Leukemia ; 32(3): 744-751, 2018 03.
Article in English | MEDLINE | ID: mdl-28924240

ABSTRACT

14-3-3 proteins are a family of master regulators of intracellular signaling, yet their impact on proteasome function is unknown. We demonstrate that 14-3-3ζ binds the 11S proteasome activator, limiting proteasome assembly and cellular capacity for protein degradation. To define the functional impact of 14-3-3ζ proteasomal binding in myeloma cells, silencing and overexpression experiments are performed. We find that downregulation of 14-3-3ζ impairs myeloma cell growth and confers resistance to clinically used proteasome inhibitors. In a large cohort of newly diagnosed myeloma patients, elevated expression of 14-3-3ζ is associated with high risk myeloma genetic subtypes and worse prognosis overall. Our work demonstrates the important role of 14-3-3ζ in regulating proteasome function, myeloma cell growth and sensitivity to therapeutics, and suggests regulation of 14-3-3ζ as a new approach in myeloma therapy.


Subject(s)
14-3-3 Proteins/metabolism , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , 14-3-3 Proteins/genetics , Cell Line, Tumor , Humans , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Protein Binding , Proteolysis , Signal Transduction/drug effects
6.
Nat Commun ; 7: 13156, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725670

ABSTRACT

Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

7.
Nat Commun ; 6: 6407, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25728197

ABSTRACT

Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

8.
Genes Immun ; 15(8): 543-55, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25101797

ABSTRACT

Major histocompatibility class II (MHC-II) expression is critical for immune responses and is controlled by the MHC-II transactivator CIITA. CIITA is primarily regulated at the transcriptional level and is expressed from three main promoters with myeloid, lymphoid and interferon (IFN)-γ-treated non-hematopoietic cells using promoters pI, pIII and pIV, respectively. Recent studies in non-hematopoietic cells suggest that a series of distal regulatory elements may be involved in regulating CIITA transcription. To identify distal elements in B cells, a DNase I hypersensitivity screen was performed, revealing a series of potential novel regulatory elements. These elements were analyzed computationally and biochemically. Several regions displayed active histone modifications and/or enhanced expression of a reporter gene. Four of the elements interacted with pIII in B cells. These same four regions were also found to interact with pI in splenic dendritic cells (spDC). Intriguingly, examination of the above interactions in pI-knockout-derived spDC showed a switch to the next available promoter, pIII. Extensive DNA methylation was found at the pI region in B cells, suggesting that this promoter is not accessible in B cells. Thus, CIITA expression is likely mediated in hematopoietic cells by common elements with promoter accessibility having a part in promoter choice.


Subject(s)
Gene Expression Regulation , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Regulatory Sequences, Nucleic Acid/genetics , Trans-Activators/genetics , Animals , B-Lymphocytes/metabolism , Binding Sites/genetics , CCCTC-Binding Factor , Cell Line, Tumor , Cells, Cultured , DNA Methylation , Dendritic Cells/metabolism , Deoxyribonuclease I/metabolism , Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Models, Genetic , Myeloid Cells/metabolism , Protein Binding , Protein Isoforms/genetics , Repressor Proteins/metabolism
9.
Br J Cancer ; 105(10): 1574-81, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-22067903

ABSTRACT

BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tumour tissue represents an immense but mainly untapped resource with respect to molecular profiling. The DASL (cDNA-mediated Annealing, Selection, extension, and Ligation) assay is a recently described, RT-PCR-based, highly multiplexed high-throughput gene expression platform developed by Illumina specifically for fragmented RNA typically obtained from FFPE specimens, which enables expression profiling. In order to extend the utility of the DASL assay for breast cancer, we have custom designed and validated a 512-gene human breast cancer panel. METHODS: The RNA from FFPE breast tumour specimens were analysed using the DASL assay. Breast cancer subtype was defined from pathology immunohistochemical (IHC) staining. Differentially expressed genes between the IHC-defined subtypes were assessed by prediction analysis of microarrays (PAM) and then used in the analysis of two published data sets with clinical outcome data. RESULTS: Gene expression signatures on our custom breast cancer panel were very reproducible between replicates (average Pearson's R²=0.962) and the 152 genes common to both the standard cancer DASL panel (Illumina) and our breast cancer DASL panel were similarly expressed for samples run on both panels (average R²=0.877). Moreover, expression of ESR1, PGR and ERBB2 corresponded well with their respective pathology-defined IHC status. A 30-gene set indicative of IHC-defined breast cancer subtypes was found to segregate samples based on their subtype in our data sets and published data sets. Furthermore, several of these genes were significantly associated with overall survival (OS) and relapse-free survival (RFS) in these previously published data sets, indicating that they are biomarkers of the different breast cancer subtypes and the prognostic outcomes associated with these subtypes. CONCLUSION: We have demonstrated the ability to expression profile degraded RNA transcripts derived from FFPE tissues on the DASL platform. Importantly, we have identified a 30-biomarker gene set that can classify breast cancer into subtypes and have shown that a subset of these markers is prognostic of OS and RFS.


Subject(s)
Breast Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Paraffin Embedding , Base Sequence , Breast Neoplasms/pathology , Cohort Studies , DNA Primers , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Polymerase Chain Reaction
10.
Br J Cancer ; 102(3): 570-6, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20068566

ABSTRACT

BACKGROUND: Recent studies have indicated that prostate cancer patients with the TMPRSS2-ERG gene fusion have a higher risk of recurrence. To identify markers associated with TMPRSS2-ERG fusion and prognostic of biochemical recurrence, we analysed a cohort of 139 men with prostate cancer for 502 molecular markers. METHODS: RNA from radical prostatectomy tumour specimens was analysed using cDNA-mediated, annealing, selection, extension and ligation (DASL) to determine mRNAs associated with TMPRSS2-ERG T1/E4 fusion and prognostic of biochemical recurrence. Differentially expressed mRNAs in T1/E4-positive tumours were determined using significance analysis of microarrays (false discovery rate (FDR) <5%). Univariate and multivariate Cox regression determined genes, gene signatures and clinical factors prognostic of recurrence (P-value <0.05, log-rank test). Analysis of two prostate microarray studies (GSE1065 and GSE8402) validated the findings. RESULTS: In the 139 patients from this study and from a 455-patient Swedish cohort, 15 genes in common were differentially regulated in T1/E4 fusion-positive tumours (FDR <0.05). The most significant mRNAs in both cohorts coded ERG. Nine genes were found prognostic of recurrence in this study and in a 596-patient Minnesota cohort. A molecular recurrence score was significant in prognosticating recurrence (P-value 0.000167) and remained significant in multivariate analysis of a mixed clinical model considering Gleason score and TMPRSS2-ERG fusion status. CONCLUSIONS: TMPRSS2-ERG T1/E4 fusion-positive tumours had differentially regulated mRNAs observed in multiple studies, the most significant one coded for ERG. Several mRNAs were consistently associated with biochemical recurrence and have potential clinical utility but will require further validation for successful translation.


Subject(s)
Gene Fusion , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Cohort Studies , Humans , Male , Neoplasm Recurrence, Local , Oligonucleotide Array Sequence Analysis , Prognosis , Prostate-Specific Antigen/blood , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...