Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(42): e2303602, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37344993

ABSTRACT

Polymeric carbon nitride is a promising photoanode material for water-splitting and organic transformation-based photochemical cells. Despite achieving significant progress in performance, these materials still exhibit low photoactivity compared to inorganic photoanodic materials because of a moderate visible light response, poor charge separation, and slow oxidation kinetics. Here, the synthesis of a sodium- and boron-doped carbon nitride layer with excellent activity as a photoanode in a water-splitting photoelectrochemical cell is reported. The new synthesis consists of the direct growth of carbon nitride (CN) monomers from a hot precursor solution, enabling control over the monomer-to-dopant ratio, thus determining the final CN properties. The introduction of Na and B as dopants results in a dense CN layer with a packed morphology, better charge separation thanks to the in situ formation of an electron density gradient, and an extended visible light response up to 550 nm. The optimized photoanode exhibits state-of-the-art performance: photocurrent densities with and without a hole scavenger of about 1.5 and 0.9 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), and maximal external quantum efficiencies of 56% and 24%, respectively, alongside an onset potential of 0.3 V.

2.
J Mater Chem A Mater ; 10(31): 16585-16594, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36091884

ABSTRACT

The photoelectrochemical oxidation of organic molecules into valuable chemicals is a promising technology, but its development is hampered by the poor stability of photoanodic materials in aqueous solutions, low faradaic efficiency, low product selectivity, and a narrow working pH range. Here, we demonstrate the synthesis of value-added aldehydes and carboxylic acids with clean hydrogen (H2) production in water using a photoelectrochemical cell based solely on polymeric carbon nitride (CN) as the photoanode. Isotope labeling measurements and DFT calculations reveal a preferential adsorption of benzyl alcohol and molecular oxygen to the CN layer, enabling fast proton abstraction and oxygen reduction, which leads to the synthesis of an aldehyde at the first step. Further oxidation affords the corresponding acid. The CN photoanode exhibits excellent stability (>40 h) and activity for the oxidation of a wide range of substituted benzyl alcohols with high yield, selectivity (up to 99%), and faradaic efficiency (>90%).

3.
ACS Appl Energy Mater ; 4(2): 1868-1875, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33644702

ABSTRACT

Tailored design of hybrid carbon nitride (CN) materials is quite challenging because of the drawbacks of the solid-state reaction, and the utilization of single crystals containing C-N monomers as reactants for the high-temperature reaction has been proven to imprint a given chemical composition, morphology, or electronic structure. We report the one-pot synthesis of alkali-containing CN macrostructures with ionic crystals on its surface by utilizing a tailored melamine-hydrochloride-based molecular single crystal containing NaCl and KCl as reactants. Structural and optical investigations reveal that upon calcination, molecular doping with Na+ and K+ is achieved, and additionally, the ionic species remain on the surface of the materials, resulting in an enhanced H2 evolution performance through water splitting owing to a high ionic strength of the reaction media. Additionally, the most stable configuration of the alkaline metals in the CN lattice is evaluated by DFT calculations. This work provides an approach for the rational design of CN and other related metal-free materials with controllable properties for energy-related applications and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...